


# Presentation to the 2002 Senior Review of Mission Operations and Data Analysis

Frederick Lamb
University of Illinois
Chairman, RXTE Users Group



The Rossi X-Ray Timing Explorer



## Addresses Fundamental Astrophysics Questions with Unique Capabilities

#### RXTE addresses many fundamental questions, including -

- Gravitational physics in the strong-field regime
- Physics of ultradense matter and ultrastrong magnetic fields
- Mass inflows and outflows in accretion-powered systems



## RXTE has capabilities unmatched by any other current or planned mission –

- Large collecting area and low background
- Broad (2-200 keV) energy coverage; will provide the only coverage above 10 keV
- Provides timing from 1 μs to 10 Ms
- Continuous monitoring of the X-ray sky
- Rapid response (15 min) when necessary for new sources and changes in known sources
- Highly flexible (even "last-minute") scheduling, excellent coverage of the night sky
- Uniquely high telemetry rates
- Sophisticated onboard data processing



### **Rationale for Continuing the Mission**

- RXTE has many unique capabilities
- These capabilities are continuing to yield major discoveries that address fundamental questions
- Follow-up observations are critical to capitalize on these discoveries and to resolve outstanding questions
- Coordinated observations with Chandra, XMM-Newton, INTEGRAL, and the new TeV observatories will increase greatly the scientific yields of all these efforts



# Some Major Scientific Discoveries and Accomplishments Since June 2000

- Sidebands on kilohertz QPOs in neutron stars
- Pairs of stable high-frequency QPOs in black holes
- Firmer evidence for black holes with significant spin
- Evidence for 3:2 frequency relation of black hole QPOs
- Superbursts from neutron stars
- Two more millisecond accretion-powered pulsars (making 3 total)
- Strong correlation of X-ray and TeV flaring in blazars
- Evidence for SGR-like bursts from an anomalous X-ray pulsar
- Large glitches in the spin of the fastest rotation-powered pulsar
- Discovery of additional pulsars with cyclotron resonance lines



## Some Major Scientific Discoveries and Accomplishments Since June 2000

#### **Events Last Month (May 2002)**

- Discovery of a third millisecond accretion-powered pulsar (XTE J0929–314,  $v_{\rm spin}$  = 185 Hz)
- Discovery of a new black hole candidate (XTE J1908+094)
- Simultaneous very strong X-ray and TeV flare in 1ES 1959+650
- Strong X-ray flare in Eta Carinae
- X-ray and radio observations of unusually strong optical flaring of the black hole SAX J1819.3–2525 = V4641 Sgr
- Largest outburst of black hole candidate GX 339–4 since 1988, revealing microquasar behavior (Belloni et al. 2002)

(10 RXTE IAU Circulars in May)



### **Productivity and Guest Observing Budget**

#### **RXTE Publications**

- The yearly rate of RXTE-related refereed publications has increased by a factor ~ 10 from 1996 to 2001
- More than 730 refereed papers and 430 IAU Circulars have now been published
- More than 2,000 RXTE-related papers have been published to date (~1,000 since the 2000 Senior Review)

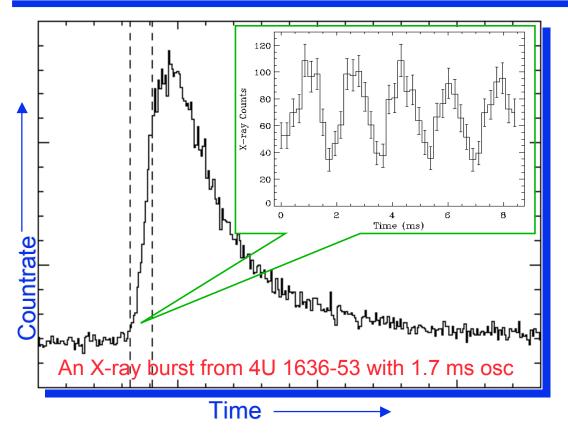
#### **Requested Budget for Guest Observations**

- The 1998 Senior Review recommended that \$1,000 k be transferred from the RXTE budget to the ADP budget to support RXTE and other observations via this program
- For AO-8 we are requesting an average of \$10 k for successful RXTE observing proposals, which amounts to \$700k per year



### **Productivity and Guest Observing Budget**

#### **Differences in AO-7 Operation Mode**


- Less reluctance to interrupt non-TOO's (60% more TOO observing time during the first 3 months of AO-7 than in AO-6)
- Greater confidence in the value of short observations and skill at planning are making possible more extensive monitoring programs
- Chandra and XMM-Newton coordinated observations are more common (~20% of the total)
- Chandra cycle 5 TACs will be able to allocate 500 ksec of RXTE time

#### **Justification of the Requested Budget**

- The requested yearly budget is only ~ 40% of the average budget over the first 5 years of the mission
- The requested budget has (very modest) support for GOs
- Support for a postdoc to maintain the ASM calibration
- 50% of a programmer to revise the software to protect the unique scheduling capability of RXTE



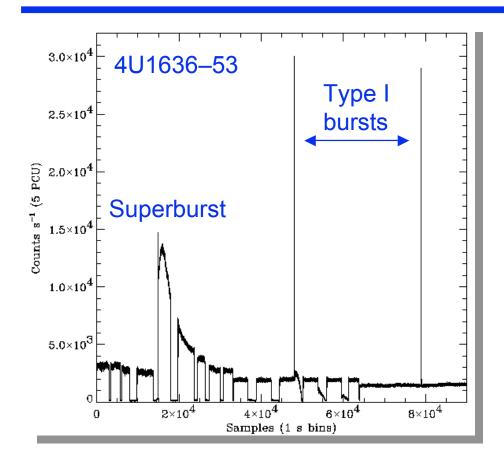
### Physics of Nuclear Burning and Neutron Star Dynamics from X-ray Burst Oscillations

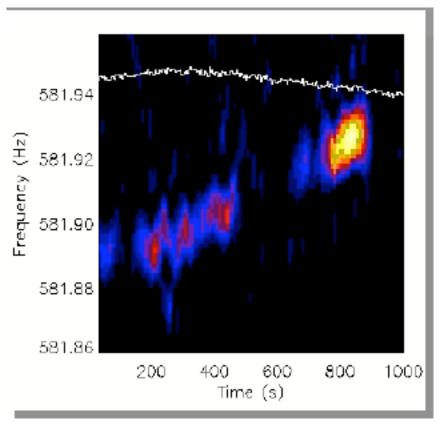


Ignition begins at a single point, creating a bright spot.

As the bright spot rotates with the star, we see X-ray oscillations.

The oscillation frequency varies systematically during a burst.

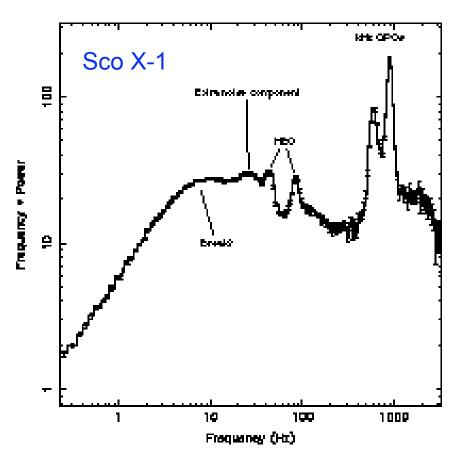

(Strohmayer et al. 1996, 1998)


#### Implications for physics of neutron stars and nuclear burning -

- The oscillations imply spin rates ~ 250–350 Hz, as expected from magnetic equilibrium.
- The oscillations in burst tails require confinement, possibly by the magnetic field.
- Oscillation amplitudes and waveforms constrain neutron star compactness (M/R).



## Discovery of "Superbursts" With Nearly Stable Periodic Oscillations



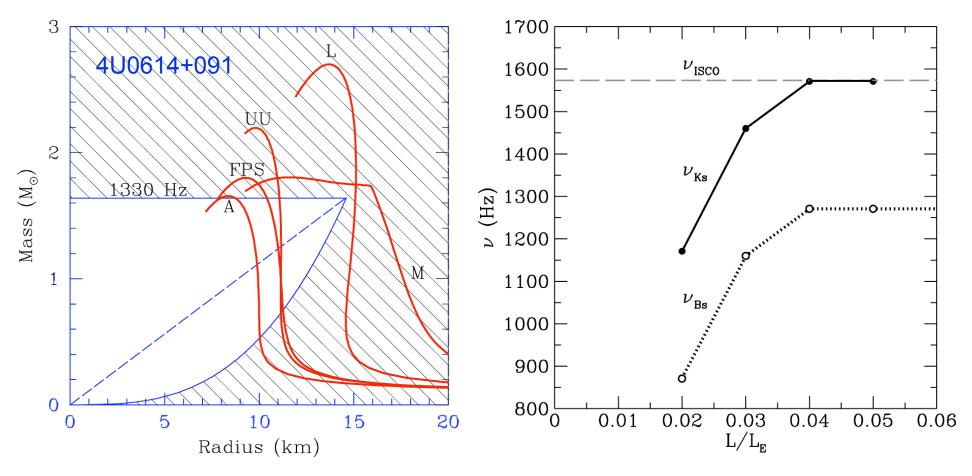



- Duration and total X-ray energy is ~ 1,000 times that of Type I X-ray bursts
- So far seen in five neutron stars. ASM saw 2 superbursts from 4U1636–53.
- Nuclear energy release occurs at much greater depths than in Type I bursts



### Kilohertz Quasi-Periodic X-ray Brightness Oscillations in Accreting Neutron Stars



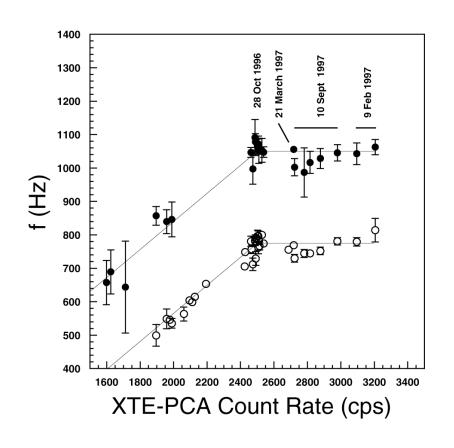

X-ray flux power density spectrum observed by Wijnands et al. (1998)

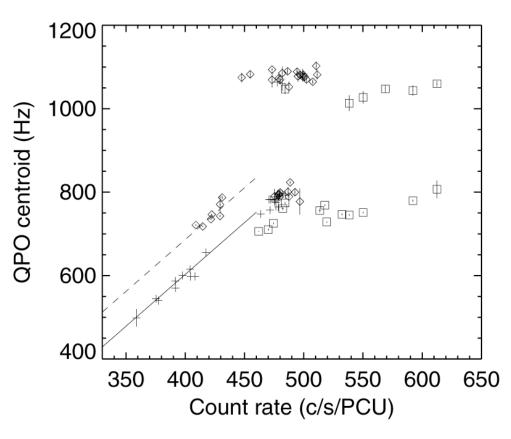
#### Key kilohertz QPO properties –

- Observed in > 20 neutron stars
- High coherence ( $v/\delta v \sim 30-200$ )
- Two principal oscillations
- Their frequency separation  $\Delta v$  remains fairly constant, about equal to the neutron star spin frequency
- The frequencies of the kHz QPOs can vary by several hundred Hz within ~ 100–1,000 seconds



## **Constraints on Properties of Dense Matter Evidence for General Relativistic Effects**



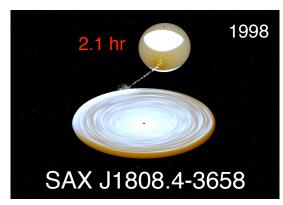


Left: Comparison of upper kilohertz QPO frequency with NS EOS

Right: ISCO signature predicted by Miller, Lamb, and Psaltis (1998)



## **Evidence for the Predicted ISCO Signature Observed in 4U1820–30**

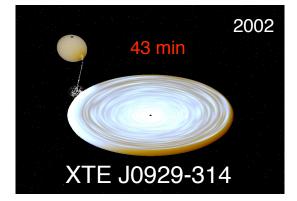





Left: QPO frequencies vs. countrate during 1996–97 (Zang et al. 1998)

Right: QPO frequencies vs. countrate during 1998 (Kaaret et al. 1999)

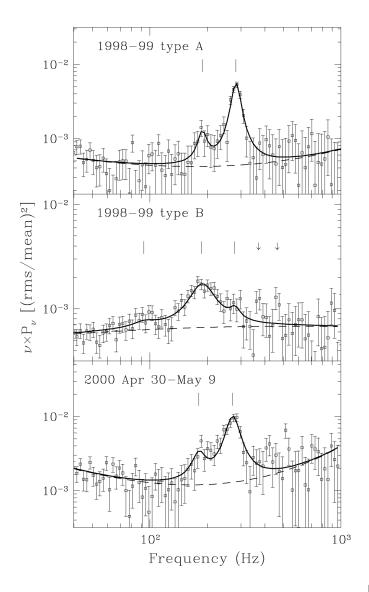



## Discovery of Three Accretion-Powered Millisecond Pulsars in Ultracompact Systems



$$v_{\text{spin}} = 401 \text{ Hz}, \text{ f(M)} = 3.9 \text{ x } 10^{-5} \text{ M}_{\odot}$$




$$v_{\text{spin}} = 435 \text{ Hz}, \text{ f(M)} = 1.3 \text{ x } 10^{-6} \text{ M}_{\odot}$$



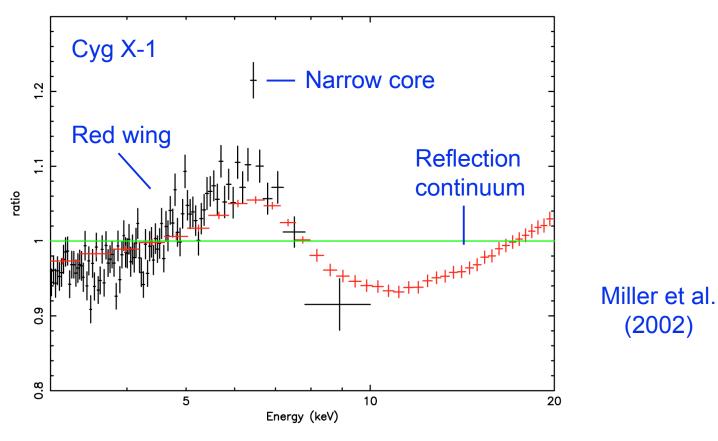
$$v_{\text{spin}} = 185 \text{ Hz}, \text{ f(M)} = 2.7 \text{ x } 10^{-7} \text{ M}_{\odot}$$



## Discovery of Pairs of High-Frequency QPOs in Galactic Black-Hole Candidates



Stable frequencies, with evidence for 3:2 frequency ratios

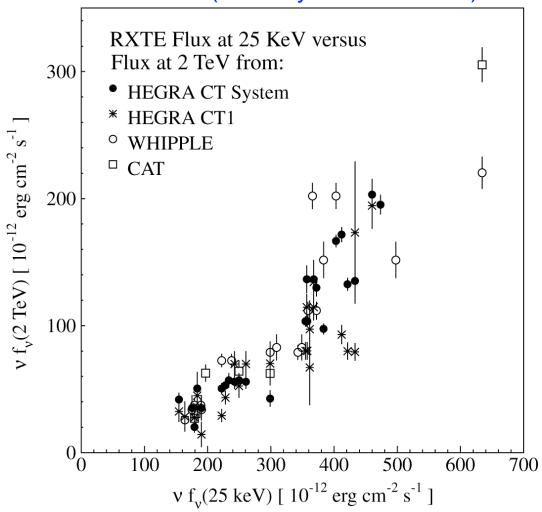

QPOs are strongest at photon energies greater than 10 keV

Amplitude ratios change systematically with X-ray spectral state



## Coordinated RXTE & Chandra Observations of Fe Lines in Galactic Black-Hole Candidates

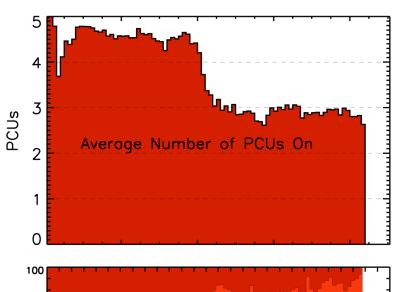





- RXTE/PCA and Chandra/HETGS line spectra agree well
- The Fe line is broad with a very narrow central component
- The reflection continuum is very clear in the RXTE spectrum



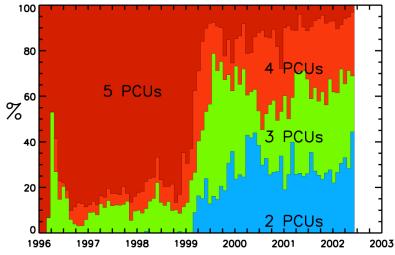
## Discovery of Strong Positive Correlation Between X-ray and TeV Flaring


#### Mk 501 (Krawczynski et al. 2002)



Further coordinated observations with TeV observatories are a major focus of the observing program in the current AO-7 observing cycle




### **Health of the Proportional Counter Array**



PCU performance has been stable over the past 18 months

On average, 3 PCUs are in use at any one time

All 5 PCUs are used when needed

