Search in Xamin or Browse... |
GCSCAT - Globular Cluster Systems of Galaxies Catalog |
HEASARC Archive |
A Catalog of Globular Cluster Systems: What Determines the Size of a Galaxy's Globular Cluster Population? Harris W.E., Harris G.L.H., Alessi M. <Astrophys. J., 772, 82 (2013)> =2013ApJ...772...82H (SIMBAD/NED BibCode)
Name
The galaxy identification.
Alt_Name
An alternate identification for the galaxy.
RA
The Right Ascension of the galaxy in the selected equinox. This was
given in J2000.0 decimal degrees in the original table.
Dec
The Declination of the galaxy in the selected equinox. This was
given in J2000.0 decimal degrees in the original table.
LII
The Galactic Longitude of the galaxy.
BII
The Galactic Latitude of the galaxy.
Morph_Type
The morphological type of the galaxy.
Distance
The distance D of the galaxy, in Mpc, primarily from the raw data
in NED.
Distance_Error
The uncertainty in the distance, in Mpc.
Distance_Method
The method that the authors used to determine the distance to the galaxy. For
relatively nearby galaxies, wherever possible the authors adopt D-values
measured from primary standard candles based on resolved stellar populations
(Cepheids, red-giant-branch-tip stars, planetary nebula luminosity functions,
Mira stars, RR Lyrae stars). Surface brightness fluctuations measured from
integrated light are also used as a standard candle. For each such galaxy the
authors adopt the average of the most recent individual measurements of those
six primary methods (they emphasize that their adopted values are not the
averages given in NED). For some slightly more distant galaxies for which
these primary indicators are not available, they use recent determinations
from the Tully-Fisher relation as listed in NED. For still more distant
systems (D >~ 30 Mpc) they use Hubble's law with H0 = 70 km s-1 Mpc-1 ^,
and with the galaxy radial velocity corrected to the cosmic microwave
background reference frame.
The following abbreviations for the distance methods are used here:
GCLF: Globular Cluster luminosity function (?) PNLF: Planetary nebula luminosity function RRL: RR Lyrae stars SBF: Surface brightness fluctuations TF: Tully-Fisher TRGB: tip of the red-giant branch
Vmag_Extinction
The foreground V-band extinction towards the galaxy,
taken from NED.
Abs_Vmag
The absolute visual magnitude, MVT, of the galaxy,
calculated from the
distance modulus and the integrated magnitude VT0 if available from NED.
In other cases where a total V magnitude was unavailable the authors have used
a blue magnitude BT and the integrated (B-V) color index taken from the
HyperLeda database.
Abs_Vmag_Error
The uncertainty in the absolute visual magnitude of the
galaxy.
Abs_Kmag
The absolute near-infrared (near-IR) magnitude, MKT of the
galaxy, calculated from the distance modulus and the integrated K magnitude
from the Two-Micron All-Sky Survey (2MASS). The authors use here the 2MASS
K(ext) magnitude for each galaxy, a quantity which is available for 82% of the
galaxies in their catalog. Although an alternate and perhaps preferable choice
would be the frequently used Ks band, this is unavailable for most of these
galaxies.
Abs_Kmag_Error
The uncertainty in the absolute near-infrared (near-IR)
magnitude of the galaxy,
Num_Glob_Clust_Limit
This parameter contains a limit flag for the number of
globular clusters in the galaxy.
Num_Glob_Clust
The total number of globular clusters, Ngc, in the galaxy.
Num_Glob_Clust_Error
The uncertainty in the total number of globular
clusters in the galaxy.
Ref_Num_Glob_Clust
The code(s) for the reference source(s) for the total
number of globular clusters in the galaxy:
1 = Adamo, A. et al 2011, MNRAS 414, 1793; 1a = Alamo-Martinez, K.A. et al. 2012, A&A 546, A15; 2 = Annibali, F. et al 2011, AJ 142, 129; 3 = Bassino, L.P. et al. 2006, A&A, 451, 789; 4 = Bassino, L.P., Richtler, T., & Dirsch, B. 2006, MNRAS, 367, 156; 5 = Bassino, L.P., Richtler, T., & Dirsch, B. 2008, MNRAS, 386, 1145; 6 = Blakeslee, J. P. 1999, AJ 118, 1506; 7 = Blakeslee, J. P. et al 1997, AJ 114, 482; 8 = Blecha, A. 1986, A&A 154, 321; 9 = Bonfini, P. et al 2012, MNRAS 421. 2827; 10 = Bridges, T. J., & Hanes, D. A, 1990, AJ 99, 1100; 10a = Bridges, T. J., & Hanes, D. A, 1994, ApJ 431, 625; 11 = Brodie, J. P. & Larsen, S. S. 2006, A&A, 448, 155; 12 = Brown, R. J. et al. 2000, MNRAS 317, 406; 13 = Butterworth, S. T., and Harris, W. E. 1992, AJ 103, 1828; 14 = Cantiello, M. et al 2007, ApJ 668, 209; 15 = Chandar, R. et al 2002, ApJ 564, 712; 16 = Chandar, R. et al 2004, AJ 611, 220; 17 = Chapelon, S. et al. 1999, A&A, 346, 721; 18 = Cho, J. et al 2012, MNRAS 422, 3591; 19 = Chomiuk, L., Strader, J., & Brodie, J.P. 2008, AJ, 136, 234; 20 = Cockcroft, R. et al. 2009, AJ 138, 758; 21 = DeGraaff, R. et al 2007, ApJ 671, 1624; 22 = Di Nino, D., et al. 2009, AJ, 138, 1296; 23 = Dirsch, B., Schuberth, Y., & Richtler, T. 2005, A&A, 433, 43; 24 = Durrell, P. R. et al 1996, AJ 112, 972; 25 = Durrell, P. R. et al. 1996, ApJ, 463, 543; 26 = Faifer, F. R. 2011, MNRAS 416, 155; 27 = Fischer, P. et al 1990, PASP 102, 5; 28 = Forbes, D. A., Brodie, J. P., & Huchra, J. 1997, AJ, 113, 887; 29 = Forbes, D. A. et al. 1998, MNRAS, 293, 1334; 30 = Forbes, D. A. et al 2000, A&A 358, 471; 31 = Forbes, D. A. et al. 2000, A&A, 358, 471; 32 = Forbes, D. A. et al 2010, MNRAS 403, 429; 33 = Forbes, D. A., Georgakakis, A. E., & Brodie, J. P. 2001, MNRAS, 325, 1431; 34 = Forte, J. C. et al. 2001, AJ 121, 1992; 35 = Foster, C. et al. 2011, MNRAS 415, 3393; 36 = Gebhardt, K. & Kissler-Patig, M. 1999, AJ, 118, 1526; 37 = Georgiev, I. et al. 2010, MNRAS 406, 1967; 38 = Goudfrooij, P. et al. 2001, MNRAS, 322, 643; 39 = Goudfrooij, P. et al 2003, MNRAS 343, 665; 40 = Goudfrooij, P. et al. 2007, AJ, 133, 2737; 41 = Hanes, D. A. & Harris, W. E. 1986, ApJ, 309, 564; 42 = Hargis, J. R. et al 2011, ApJ 738, 113; 42a = Hargis, J.R., & Rhode, K.L. 2012, AJ, 144, 164; 43 = Harris, G. L. H. 2010, PASA 27, 475; 43a = Harris, H.C., and Harris, W.E. 2000, Astrophysical Quantities, p.545; 44 = Harris, W. E. 1996, AJ 112, 1487; 45 = Harris, W. E., & Hanes, D. A. 1985, ApJ 291, 147; 46 = Harris, W. E., & van den Bergh, S. 1981, AJ 86, 1627; 46a = Harris, W.E. et al. 1995, ApJ 441, 120; 47 = Harris, W. E. et al 2009, AJ 137, 3314; 48 = Harris, W. E. et al 2013, in preparation; 49 = Hilker, M. & Kissler-Patig, M. 1996, A&A, 314, 357; 50 = Hodge, P. et al 1999, ApJ 521, 577; 51 = Hopp, U., Wagner, S. J., & Richtler, T. 1995, A&A, 296, 633; 51a = Huxor, A.P. et al. 2013, MNRAS, 429, 1039; 52 = Hwang, N. et al 2011, ApJ 738, 58; 53 = Jordan, A. et al. 2004, AJ, 127, 24; 54 = Jordan, A. et al. 2005, ApJ, 634, 1002; 55 = Jordan, A. et al 2007, ApJS, 169, 213; 55a = Kaisler, D. et al. 1996, AJ 111, 2224; 55b = Kalirai, J.S. et al. 2008, ApJ, 682, L37; 56 = Kaviraj, S. et al 2012, MNRAS 422, L96; 57 = Kissler-Patig, M. et al 1996, A&A 308, 704; 58 = Kissler-Patig, M. et al. 1997, A&A 327, 503; 59 = Kissler-Patig, M. et al 1999, AJ 118, 197; 60 = Kundu, A., & Whitmore, B. C. 2001, AJ 121, 2950; 61 = Kundu, A., & Whitmore, B. C. 2001, AJ 122, 1251; 62 = Larsen, S. S. et al. 2001, AJ 121, 2974; 63 = Law, D. R., and Majewski, S. R. 2010, ApJ 718, 1128; 64 = Ma, J. 2012, AJ 144, 41; 65 = Marin-Franch, A., & Aparicio, A. 2002, ApJ 568, 174; 66 = Maybhate, A. et al 2007, AJ, 134, 1729; 66a = Meurer, G.R. et al. 2003, ApJ 599, L83; 66b = Mieske, S. et al. 2004, AJ, 128, 1529; 67 = Miller, B. W. and Lotz, J. M. 2007, ApJ 670, 1074; 68 = Mora, M. D. et al. 2007, A&A 464, 495; 70 = Mora, M. D. et al. 2009, A&A, 501, 949; 71 = Morbey, C. L., & McClure, R. D. 1985, PASP 97, 110; 72 = Nantais, J. B. et al. 2010, ApJ, 139, 1413; 73 = Nolan, L. A. et al. 2006, IAU Symp 230, 359; 74 = Okon, W. M. M. & Harris, W. E. 2002, ApJ, 567, 294; 75 = Olsen, K. A. G. 2004, AJ, 127, 2674; 76 = Peacock, M. B. et al 2010, MNRAS 402, 803; 77 = Peng, E. W. et al. 2008, ApJ, 681, 197; 78 = Peng, E. W. et al 2011, ApJ 730, 23; 79 = Perrett, K. M. et al. 1997, AJ, 113, 895; 80 = Puzia, T. H. et al. 2000, AJ, 120, 777; 81 = Puzia, T. H. et al. 2004, A&A, 415, 214; 82 = Rhode, K. L. et al 2007, AJ 134, 1403; 83 = Rhode, K. L. et al 2010, AJ 140, 430; 84 = Rhode, K. L., & Zepf, S. E. 2001, AJ, 121, 210; 85 = Rhode, K. L., & Zepf, S. E. 2003, AJ 126, 230; 86 = Rhode, K. L., & Zepf, S. E. 2004, AJ, 127, 302; 87 = Richtler, T. et al. 1992, A&A, 264, 25; 88 = Santiago, B. X. 2008, A&A 492, 23; 89 = Santiago-Cortes, M. et al. 2010, MNRAS, 405, 1292; 90 = Schuberth, Y. et al. 2006, A&A, 459, 391; 91 = Sharina, M. and Davoust, E. 2009, A&A 497, 65; 92 = Sikkema, G. et al. 2006, A&A 458, 53; 93 = Spitler, L. et al. 2008, MNRAS, 385, 361; 94 = Spitler, L. et al 2012, MNRAS 423, 2177 95 = Tamura, N. et al. 2006, MNRAS, 373, 588; 96 = Trancho, G. et al. 1999, Globular Clusters as Guides to Galaxies, 137; 97 = van den Bergh, S. 2000, The Galaxies of the Local Group, Cambridge Univ Press, Cambridge; 97a = Veljanoski, J. et al. 2013, MNRAS, in preparation; 98 = Villegas, D. et al. 2010, ApJ, 717, 603; 99 = Whitmore, B. C. et al. 1997, AJ 114, 1797; 100 = Wyder, T. K. et al 2000, PASP 112, 1162; 100a = Young, M.D., Dowell, J.L., and Rhode, K.L. 2012, AJ 144, 103; 101 = Zepf, S. et al. 1994, ApJ, 435, L117;
Sigma_E
The stellar velocity dispersion sigmae, in km s-1, of the
galaxy. This spectroscopic quantity is dominated by the bright inner part
of the galaxy and in most cases represents the velocity dispersion of the
bulge light. Where possible the authors have taken the homogeneous sigmae
values given by Gultekin et al. (2009, ApJ, 698, 198), McElroy (1995,
ApJS, 100, 105), and McConnell et al. (2012, ApJ, 756, 179). Otherwise,
they use sigmae as compiled in HyperLeda. In total, sigmae measurements
are available for 65% of the galaxies in the catalog.
Sigma_E_Error
The uncertainty in the stellar velocity dispersion, in km
s-1, of the galaxy
Effective_Radius
The effective radius Re, in kpc, of the galaxy.
This is the radius enclosing half the total galaxy light, taken from NED or
(secondarily) HyperLeda. Here, in the interests of the best possible
combination of homogeneity and completeness, the authors use only radii
measured through optical photometry: primarily V whenever available, and
secondarily other nearby bands, including g, r, or B. The authors do not use
any values measured through infrared or near-ultraviolet bands, since these
give systematically different Re values than those in the optical
bandpasses. In total, optically based Re values are available for 81% of
the galaxies.
Effective_Radius_Error
The uncertainty in the effective radius, in kpc,
of the galaxy.
Log_Dyn_Mass
The logarithm of the dynamical mass Mdyn, in solar masses,
of the galaxy, calculated from sigmae and Re as described in Section 3
of the reference paper.
Log_Dyn_Mass_Error
The uncertainty in the logarithm of the dynamical mass,
in solar masses, of the galaxy,
Log_Tot_GC_Mass
The logarithm of the total stellar mass MGCS, in solar
masses, contained in the entire globular cluster population of the galaxy,
calculated as described in Section 3.3 of the reference paper.
Log_Tot_GC_Mass_Error
The uncertainty in the logarithm of the total stellar
mass, in solar masses, contained in the entire globular cluster population of
the galaxy.
Log_Smbh_Mass
The logarithm of the measured mass of the central
supermassive black hole (SMBH) of the galaxy, in solar masses. This is a
quantity of special interest although it is currently available for only 11%
of the galaxies in this GCS list. SMBH data are taken from Gultekin et al.
(2009, ApJ, 698, 198), McConnell et al. (2012, ApJ, 756, 179), Graham (2008,
PASA, 25, 167), and other sources listed in Harris & Harris (2011, MNRAS, 410,
2347) and Harris et al. (2013, MNRAS, submitted).
Log_Smbh_Mass_Pos_Err
The upper uncertainty in the logarithm of the
measured mass of the central supermassive black hole (SMBH) of the galaxy,
in solar masses.
Log_Smbh_Mass_Neg_Err
The lower uncertainty in the logarithm of the
measured mass of the central supermassive black hole (SMBH) of the galaxy,
in solar masses.