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ABSTRACT
F

4

Title of Thesis: Studies of Transient X-ray Sources with the

Ariel 5 All-Sky Monitor

-	 Louis Joseph Kaluzienski, Doctor of Philosophy, 1977

Thesis directed by: Professor frank B. McDonald

Since the discovery of the nova-like X-ray source Cen X-2 in 1967, 	 '!

the nature and origin of this extremely variable class of objects, the

so-called transient X-ray sources, has remained largely unresolved. The

Goddard Space Flight Center All-Sky Monitor, an imaging X-ray detector

launched aboard the Ariel-5 satellite in late 1974, has proven to be a

useful instrument in the detection and continued monitoring of the transient

sources and of transient phenomena in previously catalogued sources. The

ability to observe more than 80% of the 3-6 keV X-ray sky on a virtually

`	 continuous basis over long periods has revealed a broad spectrum of`long-

term temporal variabili ty of the "permanent" galactic X-ray sources and
r	 ,

j	 led to the detection of regular variability on time scales of days 	 weeks

j	 in several of the latter source (e.g. Cygnus X-1, Circinus X-1).

I
With ,respect to the problem of the transient X-ray sources, the	 >,

All-Sky Monitor has obtained detailed light curves of three new sources and

-^•	 provided additional data essential to the determination of the characteristic

luminosities, rates of occurrence (and possible recurrence), and spatial

^-	 distribution of these objects. The present observations ;(and those from-
i

other experiments) are consistent with a roughly uniform galactic disk

population consisting of at least two source sub-classes, with one group

I ('Type I') radiating at approximately the 'Eddington-limit'(L
E
 1.3 x 1038

M
x
 /M 	 ^, Mx = 1	 10 M o) and characterized by a mean occurrence rate

f	 -
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number (core dump number), orbit mid- and end-times,

array of computed source exposure times, 'aspect

4

(sun and spin angles), and housekeeping

ara
information

^. mete.rs- ( temperature, power and sunlight/eclipse,p	 m(	 _p	 , ,p	 n    
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status, high voltage and anti-coincidence analog

parameters, and event-time array). The 512 element

sky grid is displayed, with rows and columns
,;'	 r	 r

corresponding to spacecraft longitudinal sectors

and latitudinal segments, respectively. At the

bottom of the page are shown the average net counts

per element (as a function of latitude) and those	 v

elements with net counts (detected-expected) > 3Q

above background. . .	 181

3.7	 Computer output for one all -sky mode "accumulation" j
(ti 2 day integration). Shown at the top are the net

detector on-times accumulated core dumps and

)
mid'-time, and aspect data. The computed internal

background per element (for a given latitudinal

segment) is listed at the bottom of the page. . . 	 182

3.8	 Octant mode observation (3 orbit accumulation) of

the Taurus region in 1975. The 512 resolution

elements cover a region of ti 1/16 of the sky

`	 (AD	 700 , AA	 450 ), with spacecraft latitude increasing	 i

from bottom (equator) to top (pole) and longitude from

l
left to right. The rows marked 'sum' represent the sum

of eight latitudinal elements for each of the 16

longitudinal regions. The bottom half of the page'

represents a map (in spacecraft coordinates) of the

count array, with the computed standard deviations above

background denoted by numbers and the locations of known

,*	 xvi
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X-ray sources indicated by letters.	 Note the

relatively good spatial resolution of the nearby

sources A0535+26 and the Crab Nebula (Qe s	50 )	 .	 .	 .	 . 183

3.9 ASM measurements (daily averages; fluxes are

effective incident 3-6 keV photons cm -2 s -1 ) of four

bright sources from 1974 October - 1975 September.

The dashed lines indicate the range of source

variability as observed by UHURU.	 .	 .	 . 184

3.10 ASM measurements of the Crab Nebula (daily averages)

over an approximately two year interval.	 Dashed

lines, represent long-term averages of the data over

the indicated intervals and 	 'N',	 and	 'S'	 denote
3

measurements of the source via the 'North' 	 and e

'South'	 counters, respectively. 	 Points with
;a

relatively large systematic errors resulting from '-

spatial offsets in the detector have-not been

removed from this data. 185

3.11 High voltage calibration of the South counter
i

performed in 1976 July - August.	 Half-day accumulations

of Sco X-1	 and the Crab Nebula (normalized to their

values at the "nominal" gain setting) are plotted

vs.	 gain for each of the four high-voltage settings 186

3.12 Approximately 100 d of single-orbit Cyg X-3 and

Cyg X-1 ASM data obtained between 1974 December and

^	
s
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1975 March folded at the Cyg X-3 period (with

indicated phase) of Leach et al.	 (1975).	 The

indicated X2 values are for 10-bin folds	 (9

degrees of freedom) against the hypothesis of
r

a	 constant sourceintensity 	 .	 .	 .	 .	 .	 .-.	 .	 .	 .	 .	 .	 . 187

3.13 Data taken before the 1975 April increase (upper

trace: 1974 November - 1975 April) and after the

start of the 1975 November increase (lower

trace: 1975 November - 1976 January) folded in

5 bins using the HDE226868 ephemeris of <'

Bolton	 (1975)	 .	 .	 .	 .	 .	 .	 .	 .	 .
	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 188

3.14 ASM 34.9-d light curve of Her X-1	 in 15 bins.

The ordinate is normalized to approximate UHURU
(

counts for comparison with other measurements.

j The epoch of the start of bin 1	 i`s JD2,442,442.0. 	 .	 . 189

4.1 The 3-6 keV X-ray light curve of A1524-62. 	 The

points are data from the ASM accumulated over

j 3-7 orbits	 (, 4.5-10.5 hours). 	 The solid trace is f

a representation of the SSI data displayed in
F

Fig.	 4.2, normalized to the natural ASM ordinate

•` using the response of both experiments to the Crab

Nebula	 (`1.2 cm-2 s
-1	

in the 3-6 keV band). 	 The

i shaded regions indicate where the source is out of

the field of view of the ASM.	 SSI data in addition

to those taken over days 314.-337 consist of a single

measurement on day 433 (displayed in the figure), and

xvii
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an upper limit of 0.07 cm 2s
-1 

on day 294 (not
f

displayed).	 Cir X-1	 has the same upper limit for

both of these times.	 The la SSI position accuracy

is 0002	 190 i

4.2 The detailed history of the precursor peak from the
F

SSI.	 The lower trace is the sum of the 1.5-5.8 keV

(LE)	 and 2.4-19.8 keV•(HE)-count rates, and the

upper trace is their ratio. 	 The Crab Nebula has a

total SSI count rate of 510 s
-1	

The representative
i

error bars in the upper trace are +la, while those d•

in	 the	 lower	 trace	 are	 +2a.	 .	 . 	 .	 .	 .	 .	 .	 .	 .	
.	 .	

.	 .	 .	 191

4;3 Intensity measured from A0535+2.6 over approximately

half-day accumulation, times.	 The source is not in

the usable field of view of the ASM where the

abscissa is shaded.	 The 2a upper limits before and

after the measured points are determined primarily

by the statistical	 accuracy in the measurement of

the Crab Nebula, with which A0535+26 may be confused

in	 the	 ASM	 data	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 192

4.4 A0620-00 light curve (3-6 keV) through 1975 November.

Points prior to day Q20 are single -orbit measure-

ments, while those afterward represent tie day

averages.	 Error bars reflect the +la statistical

uncertainties.	 The dashed lines are best exponential

fits to the pre- and post-October increase data, and

the solid line is the best	 1/t fit referenced to the

xix
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approximate time of maximum light. 	 The Crab

Nebula has an intensity of -1.2 in these units.

The arrows represent the times of source dis-

covery and maximum X-ray flux 	 .	 .	 .	 .	 .	 .	 .	 . 193

4.5 Later decline of A0620-00.	 All points are	 day

averages, and the dashed line is an extrapolation

of the post-October exponential decay of Fig. 	 4.4.
j

Upper limits represent measurements of a source

flux ^` 0.1	 cm-2 s
-1 .	

.	 .	

.

194

4.6 ASM measurements of the Norma "transient" (Lower

trace) and the nearby source 301636-53 (upper trace).

The data represent tie-day (octant-mode) accumu-

lations with ± la statistical 	 error bars;

confusion of the sources may result in systematic

errors of comparable magnitude._ Also shown are the

UHURU ranges for the probable "permanent" counterpart

{

{ of the Norma Transient (4U1608-52) and the constant

level reported from UHURU for 3U1536-53. 	 The table t

lists the midtimes (T) and fluxes (S) for both

sources obtained in additional octant mode accumu-

3

lations over the period 1974 December - 1976 March. 195

4.7 The X-ray (3-9 keV) light curve of A1118-61	 from

i
the Ariel	 5 RMC.	 The source: counting rate

(background-subtracted) is plotted as a function of

time, and the symbol circle with a vertical- bar

indicates typical ±l6 values near the maximum

t
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intensity. The variation in the magnitude of the

upper limits results primarily from changes in the

distance of the source from the spin axis. The

intensity in equivalent UHURU counts s 1 may be
r

j obtained by multiplying the displayed counting rates

I by a factor of X13	 (from Eyles et al.	 1975a).,. 196

4.8 The X-ray '(3-9 keV) light curve, of the transient

A1742-28 as measured by the Ariel 	 5 RMC experiment a

(from	 Eyles	 et	 al.	 1975b)	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 197
i

4.9 The 3-6 keV X-ray light curve of the 1975 June flare

of Aquila X-1.	 The points are tie day averages, and the

error bars are +la (statistical error only). 	 The

shaded areas labelled 	 'equator' are times when Aql	 X-1

was close to the equatorial plane of the_Ariel 5

satellite; during these times the source was

inaccessible to the ASM, but observable by the SSI. 	 .	 . 198

4.10 The 1976 June flare of Aquila X-1 as measured by the

ASM`.	 .	 .	 .	 .	 .	 .	 .	 .	
.	 .	 . 	

.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 199

4.11 Summary of,Agl X-1 observations over the period 1971-
3

76.	 The OSO-7 data is taken from Markert_(1974) and

has 'been .approximately converted to ASM units via

normalization with respect to the Crab Nebula.	 Error

bars in all data have been conservatively estimated to

include possible systematic and normalization errors.

Intermittent Copernicus measurements (Qavidsen et al_.
1

r
1975) during 1973-75 	 (not displayed)	 are at the level

xxi
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.0.01-0.02, and do not preclude a 1974 outburst as

hypothesized.	 . . . . . .	 . . . .	 200

4.12	 The light curve (2-6 keV) of 3U1630-47 from 1971 -

1976 showing four outbursts separated by -600 days,

The upper limits shown are 3a, with the large upper

limits resulting when the source was not well centered

in the collimator fields of view (UHURU and Ariel 5

SSZ	 observations;	 from Jones et al. '1976)	 .	 .	 .	 .	 .	 . 201

.	 4.13	 ASM observations of the "recurrent transient"

301630-47 (Tower plot) and the nearby ,source

3U1642-45 (upper plot).	 Points are ti'2 day (octant-

mode)accumulations with + la statistical error

bars, with possible systematic errors resulting from

source confusion at least as large.	 The UHURU range-

for 3U1642-45 and the expected time of turn-on for

301630-47	 (cf. Jones et al. 1976) 	 have also been

indicated	 .	 .	 ..	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 202

4.14	 The 1975 April	 increase of Cygnus X-1 	 as observed by

the ASM.	 Points are tie-day accumulations with + la
fi	

{

statistical	 error bars.	 The source is no longer in the

field of view of the experiment after day 123
Ia

(May 3) 203

4.15	 The 1975 November - 1976 February "high 	 state of

Cygnus X-1 from the ASM. 	 The data consists of

--day accumulations with + 1u statistical	 error

bars.	 The maximum intensity is approximately 1.5

times that of the Crab Nebula 204
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4.16	 ASM observations of Cir X-1 over %200 days between

1975 September and 1976 April. The points represent

ti% day averages, and error bars reflect only the	
}

+ la statistical uncertainty of each measurement.

Blackened dots indicate observations made in the
	

k

fine resolution mode in which possible systematic

errors due to spatial offsets and source confusion	 r

are minimized. Periods when the source was out of
	 a

the effective field of view are marked by the

shaded areas along the abscissa, and the arrows

indicate the transitions predicted from the period`	 ,.

and ephemeris given in Kaluzienski et al. (1976c).

The apparent peak occurring near 1974 day 670
k

(upper shaded interval) is probably due to confusion

with the Norma transient (cf. IAU Circ., No. 2859).	 205

4.17	 ASM observations (tie day accumulations) of Circinus'

X-1 over the interval 1976 April - 1977 January	
gg

(upper trace) and OSO-8 observations (2-60 keV) of

a transition in the 16.6 cycle (lower trace).	 206

4.18	 Single- orbit data near the expected times of

transition on 1975 November 11 and 1976 February 2.

The dashed lines are relative to the best period and

transition epoch in Kaluzienski et al. (1976c). . 	 207
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4.19	 Data of Fig. 4.16 folded at the 16x585 period, with

phase 0.0 defined by the transition from high to low

intensity.	 The scatter in the data at phases 	 0.75

is due primarily to folding of cycles with differing

peak intensities, and not to finer time scale

variations within each cycle.	 The open circle

points are those in Fig. 	 4.16 which are suspected

of arising from the Norma transient	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 208

4.20	 Continuous record of Cyg X-3.	 The data points are

daily averages of ASM data, with + la error bars.

The solid bars are + la thick, 1.6-d averages of

SSI data.	 The latter are 2-18 keV measurements

which are normalized to the natural ASM ordinate

with the response of both instruments to the Crab

Nebula.	 The grid above the data indicates the

positions of expected maxima with the best fold

values of period	 (16.75 d) and epoch
maximum

JD2,442,522)	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 209

5.1	 Galactic map of transient sources, proposed

candidates, transient/variables, and long-term

variable	 lOx) UHURU sources (based upon

positions given	 in Tables 1.2,	 1.3, 4.1	 and the
A

3U	 catalog)	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 210
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	5.2	 Plot of log N(>S) vs. log S (N(>S) = Number of

sources observed above flux level S) for the post
r

UHURU transient X-ray sources. fluxes are plotted

relative to that of the Crab Nebula, and the curves

I
shown are based upon the assumptions of a

(sensitivity-limited) uniform distribution of

sources' symmetrical about the observer (and in which

no sources are missed as a result of source confusion

or incompleteness of sky coverage). . .	 . .	 211

	

5.3	 Galactic plane projection of the deduced spatial

distribution of the transient X-ray sources. Sources

I
have been divided into theType I/II subclasses as

outlined in the text and, where no classification was

obtainable, assigned, Type I luminosities. The distance

ranges shown are based upon the observed fluxes at 	 Al
a

maximum light and estimated mean values of the (peak)

-luminosi ty` listribut ons of 1038 ti [, (erg s-1) ti 1039

and 5 x 1036	L 	 s 1 ) ti 5 x 10 37 , which are	 n^

consistent with the arguments presented in the text.

The galactic model shown i`s based upon 21 cm

observations (cf. Simonson 1975). .	 212

	

5.4	 Histogram of absolute luminosities (2-10 keV band) of
y

36 X-ray sources, including Milky Way (GC - Galactic

Center; ST '= "stellar" source), Small Magellanic	 1

Cloud (SMC), and Large Magellanic Cloud (1MC) sources

x (from Margon and Ostriker 1973)	 213,
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5.5 Schematic model of the dwarf nova variable

U Geminorum.	 The optical companion (2) has over-

flowed its Roche-lobe (through the inner Lagrange

a -point L^), resulting in the formation of an

f accretion disk (shaded region) about the white

dwarf component (1; after Krzeminski 1975; from

Strohmeier 1972),	 .	 .	 .	 .	 .	 . 214

B.1 Sketch showing the relevant Earth/orbital
w

parameters for the computation of Earth occultation 215

B.2 Diagram illustrating the computation of the

occultation angle e occ (angle over the orbit during

which a source is occulted) as a function of source

declination (d) and Earth/orbital	 parameters. 216

B.3 Schematic diagram showing the calculation of source

occultation time (T(end) - T (start)) from the
o cc	 occ

occultation angle eocc
	 (S) and the relative source-sun

separation in Right Ascension. 217

C.1 -Diagram illustrating:

(a) the computation of the latitudinal correction factor

LCOR as a function of source spacecraft latitude D.

The pinhole is represented by the shaded region-;

N and S are unit vectors specifying the pinhole

normal	 and source directions, respectively; and

(b) Latitude-dependence of static fan-beam detector-

M

response ,f(D) 218
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D.1 Sketch showing

(a) the definition of the relevant parameters for the

calculation of the geometrical 	 factor for a two-

element (rectangular) detector (following t 

o

Sullivan	 1971);	 and

(b) application of (a) to the case of the All-Sky

Monitor, with "detecting" elements consisting

of the pinhole (dimension a x a) and anode

detecting strip (dimension b x fl divided
into the eight nominal 	 latitudinal	 segments

as	 shown .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 219

E.1 Log N - Log S plot for the nine Post-UHURU

transient X-ray sources.	 The solid lines

reflect the effect of off-cent6ring of the

Sun in the Galaxy (RSun-Galactic Center
s

distance, R =_ Galactic Radius) for differing

values of peak luminosity (L
38	

L/10
38
 erg s

and an assumed uniform spatial	 distribution in

the galactic disk	 (compare with Figure 5.2).

The dashed lines are a schematic representation

of.the relatively complex variation of N(>S) for

distances	 (fluxes) in the range R-R 	 < r < R+R
S	 S

The fluxes of the Pre-Ariel 	 5 transients have been

indicated	 at the top of the plot. 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 220
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CHAPTER I

,r

INTRODUCTION

A.	 Variability In Astronomy

I	 The relative steadiness of the 'emission of the majority of optical

stars over time scales short with respect to that of nuclear evolution
r

is a consequence of the stability of the nuclear burning processes under-

lying the stellar energy production. 	 In the course of its lifetime,

a typical	 isolated star will	 vary in effective surface temperature (and

hence absolute magnitude), gradually tracing out a characteristic path"

(depending on the initial mass) on the H-R diagram (see Figure 1.1).

In addition to the secular variability exhibited by all 	 stars, a small

class exists which i,s characterized primarily by variations on relatively,

short time scales, with two broad sub-divisions according to the nature

of the modulation. 	 The so-called "extrinsic" variables include those	 -

1

systems in which the light is modulated by eclipses due to a binary
r

companion or intervening nebulosity, and have added to our knowledge

`

of fundamental	 astrophysical	 parameters	 (e.g., stellar radii and masses).

Of possible significance to the understanding of the nature of certain

X-ray emitting systems are the intrinsic variables, i.e., stars in which

the fluctuations have been associated with flares (flare stars), pulsations
-3

(RR Lyrae Variables; Cepheids; W Virginis stars), quasi-regular expansion/

contraction of stellar envelopes	 (Mira Variables; semiregular variables),`
a

chaotic mass accretion (dwarf novae; recurrent novae; cataclysmic variables), A

variable mass ejection (P Cygni stars; Wolf-Rayet stars; planetary nebulae;

OB giants; B emission stars), explosive thermonuclear 	 burning (novae),
l

and gravitational	 collapse (supernovae). ,These objects have yielded

valuable information on stellar structure, dynamics, and evolution, and

^	
1
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I

provided a scale for the determination of cosmic distances (via the

period-luminosity relation of the Cepheids, Figure 1.2). The character-

istic amplitude and frequency of the variations are summarized in Table

t curves  of t typical embers of several groups1.1, and 11ghyp	 s of intrinsicm	 g	 p

variables are shown in Figures 1.3-1.5. 	 1

The study of temporal variations has also played a significant role
i

in radio astronomy. The discovery of the pulsars and their interpre-

tation in terms of the rapid rotation of a highly condensed object in

a strong magnetic field provided the first observational evidence for

the existence of neutron stars. Specific applications of pulsar obser-

vations include measurement of the frequency-dependent delay in pulse

arrival times (dispersion measure) and of the pulsar "spindown" rate, 	
y

(-P/P), which allow determination of the source distance (or, alternatively,

the mean line-of-sight electron number density) and age, respectively.

Of greater significance to the development of theoretical high energy

astronomy was the experimental proof that such collapsed objects repre-

sent a natural endpoint to some tracks of stellar evolution. This con-

clusion provided the framework for the binary accretion hypothesis for

most of the galactic X-ray sources, in which the X-ray emission is at-

tributed to the accretion of matter onto a collapsed object (i.e.,

neutron star or black hole) from a "normal" stellar companion.

B. X-ray Astronomy

The study of cosmic X-ray sources (i.e., extra-solar objects radiating
o

primarily in the 1-100 keV energy range	 .1-10 A))' began in '1962

with the accidental discovery via rocket-borne detectors of the bright

source Sco X-1 (flux	 2 x 10-7 ergs cm 2 s	 2-6 keV). By the end of

t
the decade, numerous rocket and high-altitude balloon flights expanded
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the catalog of discrete sources to roughly thirty and established the

existence of a virtually isotropic diffuse X-ray background. In addition,

these 'experiments resulted in the detection of X-ray emission from the

well-known supernova remnant Tau X-1 (Crab Nebula) and the discovery

of the first extragalactic X-ray source in the Virgo cluster of galaxies.

In contrast to the stars in the solar neighborhood the majority of X-

ray sources were variable in nature and concentrated toward the galactic

}	 plane, indicative of a non-local galactic origin.

The first satellite devoted entirely to the study of cosmic X-ray

sources, UHURU, was launched in 1970 December. With a significantly

longer time base for observations (years vs, minutes) and finer temporal

and spatial resolution than those available in the earlier rocket surveys,

UHURU increased the number of catalogued sources to 161 and led to the

identification of several radio and optical counterparts (e.g.,;Cyg X-3

and Her X-1). The sources observed by UHURU are shown in galactic

coordinates in Figure 1.6. These objects span a flux (S x range of_

Sx (2-6 keV) ti 3 x 10_
11
 -3 x 10 ^ erg cm 2s 1 , corresponding to lum-

inosities L x in the range L x (2-6 keV) ti 4 x 103 3 - 4 x 1037 d^ erg	
it	

i

s 
1 

(d, - d/1 Kpc u.5,- 20 for galactic sources), with the bulk of the

emission appearing between ro 1-20 keV, As seen in Figure 1.6, there

I	 exists a clear concentration of sources within approximately 10° of

j	 the plane and a relatively sparse, roughly isotropic (excluding the

Large and Small Magellanic clouds,) source population at higher galactic

€	 latitudes. The majority of low-latitude sources (as well as several 	 )

of the bright, higher latitude sources, e.g., Her X-1 and Sco X-1) have

been identified with stellar systems (close mass-exchange binaries;
h

supernova remnants; globular clusters) within the Kilky Way. The nature

r
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of the majority of the weak high-latitude sources, however, remains

unresolved, with some having been identified with unusual galaxies or

clusters of galaxies and others more recently associated with a signifi-

cantly weaker class of galactic objects including the binary systems

Algol and Sirius (Epstein 1976). Although a variety of astrophysical

systems are capable of substantial X-ray production, the occurrence of

relatively stable, intense (Lx ti 103 5 ergs s 1 ) X-ray sources is rare

in the galaxy, the total observed number of such objects amounting to

only a small fraction ( u 10-9 ) of the optical stars.

C. Galactic X-ray Sources

1.	 X-ray Binary Hypothesis

An estimated fifty percent (or more) of the stars in the Milky 	 z

Way occur in binary or multi-component (bound) systems. One of the most

significant contributions of UHURU was the association of several X-ray

sources with short-period (P ti 10 d) binaries in which mass exchange

between a "normal" star and compact secondary is occurring (see Figure

17). Early in the development of theoretical X-ray astronomy it had

been demonstrated that the infall of material onto a compact object

could produce gas temperatures of T ti 10 8 °K (kT ti 10 keV) and thus

result in substantial thermal X-ray emission (Shklovski; Zel'dovich

and Guseinov; Salpeter; Hayakawa and Matsuoka). Since the kinetic energy

per particle gained in falling onto the X-ray secondary (denoted by

the subscript 'x') is proportional to the ratio. M x/RX , accretion onto
neutron stars (K.E. , 100 MeV/nucleon) and black holes (K.E. ti_60-400

MeV/nucleon) is clearly more efficient than accretion onto white dwarfs

(K.E. u 0.1 MeV/nucleon) or nuclear burning of hydrogen on the stellar

surface (E	 ti
nuc 	

7 MeV/nucleon). The mass-exchange rates (M) required'

AMA
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to produce a given luminosity are correspondingly lower for neutron star

(ns)/black hole	 (bh)	 vs. white dwarf (wd) accretion:
9
 L10

ns/bh	 37

M
o
 yr-1 yr 1-	 where L

37	
L/10

37
 erg s -1
	

ThoughVS. 
Mwd	

10-6 L
37	

M
— 0

not attainable via isolated accretion from the interstellar medium

('ism',	 M
ism	

10-14
	

10
-16	

(M
—	

/M	 M	 yr 1-	 Zel'dovich and Novikov
x

1967), sufficiently large mass transfer rates have been observed to

3	 1occur during some stages of stellar evolution (M 	 10-	 M	 yr-
—max	 G

The process of mass-exchange can occur in two basic modes:	 (1)

Roche-lobe overflow of the optical primary; and/or (2)	 enhanced stellar

wind of this companion (see Figure 1.8).	 Observational	 evidence for

both types of mass transfer exists, with the Her X-1/Hz Her and Cen X-3/

Krzeminski's Star systems representing the archetypal examples of Roche-

lobe overflow and stellar wind accretion, respectively.	 In the former

case, the angular momentum of the infalling material will 	 preferentially

lead to the formation of a differentially rotating, thin accretion disk

(cf.	 Prendergast and Burbidge 1968), while in the latter a much smaller

(if any)	 disk will	 result.	 If the accreting object is a magnetized

neutron star (e.g.,	 Her X-1), the highly ionized gas will	 flow in along

field lines to the magnetic poles, which, if misaligned with the rotation

axis, will	 result in X-ray emission that appears 	 (to an external	 observer)

to be pulsed at the rotation period. 	 Alternatively, if the accreting

object is a black hole (Cyg X-1?), the gas will 	 disappear at the Schwarzschild

radius with the X-rays originating in the heated gas at the inner edges

of the accretion disk.

2.	 Temporal	 Variability

The chaotic nature of the accretion mechanism has produced a large

and diverse degree of variability in galactic X-ray sources (excluding
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supernova remnants) on time scales ranging from milliseconds to years.

On the shortest time scales, the detection of aperiodic millisecond

a
"bursts" from Cyg X-1 has been interpreted in terms of shot-like emission

resulting from accretion onto a black hole (Rothschild et al " 1974; see r

Figure 1.9)..	 A similar situation with a neutron star as the accreting
1

object may be implied by the recent discovery of the X-ray "bursters",

a fraction of whose emission is sometimes confined to quasi-regularly

spaced bursts approximately 1-10 seconds in duration (Figure 1.10).

Regular variations on short time scales 	 (,u ,03 sec - 16 min) have

also been observed, with periodically pulsing sources such as Cen X-3,-

Her X-1, and Vela X-1 being associated with neutron star rotation in
a

mass-transfer binaries. The pulsed nature of the emission from Her X-1

is well	 illustrated in the short rocket exposure displayed in Figure

1.11, which also shows the contrasting short-term variability of Cyg

X-3 (statistical	 fluctuations) and Cyg X-1 	 (bursting).	 On somewhat longer

time scales, occulting binaries with periods ranging from 1.7d 	 (Her _X-1

Figure 1.12)	 to 16.6d (Cir X-1)	 have been observed, facilitating the j

identification of optical and radio counterparts of several	 sources_
t

and aiding in the determination of the system parameters 	 (e.g., mass

function,n, semi-major axis	 and orbital	 inclination and eccentricity).
-x

In addition, the detection of binary-phase-dependent variations such

as the 4.8h sinusoidal	 modulation of Cyg X-3 (Leach et al. 	 1975), the

5.6d attenuation of Cyg X-1 centered on superior conjunction of the optical

companion HDE226868 (Holt et al.	 1976x), and the variation in low energy

spectral	 cutoff at the 2.1d orbital	 period of Cen X-3 (Schreier et al.

1976) has contributed to a better understanding of these systems
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a

Several periodic and quasi-regular variations occurring on longer

timescales (months-years) have also been observed.	 The nature of the

most well -known of these, the "anomalous" 35 d cycle of Her X-1	 (shown a

in Figure 1.12)	 in which the source turns "ON" for 11 	 days and "OFF" 9

for the remaining 24 days, is still not completely resolved, with

several mechanisms (e.g., free precession of the X-ray secondary, arecher

1972; precession of the primary, Roberts 1974; Petterson 1975) apparently

consistent with the observations. 	 A longer-term, apparently aperiodic

source modulation is exemplified by the extended "highs" and "Lows" of .'

sources such as Cen X-3_ and'Cir X-1 which have been attributed in the =

former case to large variations in the stellar wind density causing

the X-ray source to be alternately "smothered" 	 (i.e., totally self-

absorbed by the wind) or "starved" by an accretion rate too low to produce

an observable flux (Schreier et al.	 1976).	 Another type of variation,

operating on a timescale of ti10 yr, has been inferred for Her X-1 based

on the observed variability of its optical companion Hz Her (Jones,

Forman, and Liller 1973), the brightness of which is linked to the level

of X-ray emission through heating effects.

The variability of X-ray sources is not confined to the total

energy output; the observed X-ray spectra are variable, as well.	 Spectral

characteristics in general are necessary in determining such source

parameters as temperature, particle densities, elemental	 abundances,
s

and the nature of the energy mechanism itself. 	 A number of distinct

source spectra have been observed, which have been interpreted in terms

of a variety of _thermal 	 (collisional)	 and non-thermal models.	 The
a

There is now evidence for an additional, low-level 'turn-on near mid-
phase of the cycle, cf. Holt et al. 1976f.
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measurement of low energy cutoffs, i.e., the preferential	 absorption

of X-rays with decreasing energy, S(E)	 . So (E) exp	 [-N NQ (E)]	 , have
1

been useful ,in determining the distances to sources 	 (when consistent

with absorption by interstellar neutral hydrogen alone) or the presence r

of cold circumstellar material. 	 In many cases spectral changes have 1a

♦ 	 accompanied temporal	 variations, as exemplified by the observed spectral

transition of Cyg X-1 concurrent with an approximately five-fold decrease

in the 2-6 keV flux (cf. Thorne and Price 1975).	 Cyg X-3 has also been

observed to exhibit a spectrum which varies from a featureless blackbody

distribution to a flat spectrum with iron line emission at % 6.7 keV

(both states corresponding to roughly the same 2-30 keV luminosity)

over a timescale of _N 1 year (Serlemitsos et al.	 1975).	 The value of
a

such spectral/temporal measurements is clearly demonstrated by the

determination of the binary nature of GX301-2, which resulted directly

from the detection of regular variations in the spectrum of that source e

(Swank et al.	 1976).,	 It is apparent, then, that the study of both the

spectral and temporal characteristics of X-ray sources is important

to a detailed understanding of the nature of these systems.

D. 	 Transient X-ray Sources

In early April	 1967, a bright (S ti 10 S	 )(2) new-X-ray source
crab

was discovered in the constellation Centaurus. 	 A rocket survey of the

same, region conducted	 18 months earlier had failed to detect an observable

signal(S	 0.3 
Scrab) 

at the subsequently reported position. 	 Further

observations revealed a steady decline in brightness 	 (see Figure 1.13),

with the source (designated Cen X-2) 	 again disappearing below detectable

1

2 S crab	 =	
2-6 keV flux from the Crab nebula = 1.6 x 10

-g
 ergs cm-2s-l.
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levels (S 'S 0.4 
Scrab) 

by late September. The detection (through mid-

1974) of at least three additional sources exhibiting roughly the same

temporal behavior as Cen X-2 (Cen X-4, 3U1543-47, and 3U1735-28 see

Figures 1.13, 1.14, and Table 1.2) firmly established the existence

of the so-called "transient X-ray sources". It is apparent from Table

t	 1.2 that these early sources are relatively bright objects (Sipax > Scrab)

located (except for Cen X-4) at low galactic latitude. In addition,

although the initial increase phase was not observed in Cen X-2, all

of the subsequently detected sources have been characterized by a sudden

rise to maximum flux and gradual, nova-like decay.

In 1974 October the GSFC All-Sky Monitor, capable of monitoring

the entire X-ray sky on a virtually continuous basis, was launched aboard

the Ariel 5 satellite. During the first year of operation, five additional

transient sources were detected by instruments -onboard,Ariel 5 (with

several other candidates reported in IAU Circulars), implying a signifi-

cantly higher rate of occurrence than suggested by the earlier obser-

vations. All of the sources (summarized in Table 1.3) for which light

curves were obtained exhibit the characteristic nova-like variation

of the _earlier sources and satisfy the following approximate empirical

criteria;

(1) rapid rise (t 	 ti 1 wk) to primary maximum (At	 1 wk)
rise	 max

followed by a gradual decline with characteristic decay times in the

range -rd ti 1	 8 wks (e-folding) or t1/10 , 2 - 18 wks (10% of maximum);

I	 (2) magnitude of outburst, SmaxŜmin ^ 103, with S
min ` 1 UHURU

ct s-1 (= 1 .7 x 10-11 ergs cm-2s 1, 2-6 keV);

(3) mean interval between possible recurrent outbursts, T
	

>
rec 

2 yr; and

r,_	 a	 _	 h AA
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(4) preferential appearance at low galactic latitudes (Jb) ti 5 0 ), r,

We shall use these observed properties as a rough operational definition

of the transient X-ray sources in this thesis. While the majority of	 -'

variable" sources are thus excluded by this definition, it will become'

evident later that a clear-cut distinction between the two source classes

(i.e., 'transient' vs. 'variable') is not always possible. Finally,

note that the recently discovered "weak, high-latitude transients",

i.e., sources characterized by relatively low flux levels at maximum

(S	 0.Ool 
Scrab) 

rapid decay (T d < 1 wk), and occurring at high galactic

latitudes (cf. Ricketts, Cooke, and Pounds 1976), are also excluded

by the above definition. As discussed in Chapter V, these sources almost

certainly represent a distinctly different type of transient phenomenon

from that described above.

E, Purpose

The limited scope of the early transient source observations (e.g.,

gaps in source coverage, crude temporal and spectral measurements)

left the problem of the nature of these objects largely unresolved.

As a consequence of their characteristic nova-like outbursts, thereby 	 !

apparently distinguishing the transients from the more stable "permanent"

X-ray sources, most of the early models attempted to interpret the new

phenomenon in terms of analogous stellar objects (e.g., extragalactic

supernovae; galactic novae) or more unconventional, hypothetical mechanisms

(e.g., black holes traversing dense interstellar clouds, Sofia 1971;

r	 association with extragalactic radio outbursts, Pacini and Salvati 1974).

,a
In this thesis we attempt to apply observations of the All-Sky Monitor

(ASM) to the-problem of the nature of the transient X-ray sources. The
r	 s	 `;

r	ASM (described in detail in Chapter II) utilizes a pair of imaging
s

y
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"pinhole-camera" proportional counters to provide virtually continuous`

i

coverage of	 80% (instantaneously) of the X-ray sky in the 3-6 keV

energy range at a sensitivity of S ti 0.1 Sa	 With this type of
crab

y	 instrument it was hoped to substantially increase our knowledge of the

transient X-ray sources in two fundamental ways, viz.: 	 (1) early detection
r'

and continued monitoring of the flux over the source evolution yielding

comprehensive light curves for comparison with the various models;
i

I and (2) extensive sky coverage necessary (to avoid observational selection
.J

effects inherent in observations conducted by instruments with limited

fields-of-view) in obtaining reliable information on such parameters
l

t as spatial distribution, rates of occurrence (and possiblerecurrence),
s'

and peak luminosities.

I
During the first two years of operation, the ASM' and 'other Ariel	 5

experiments have detected and monitored a number of new transient sources

and observed highly variable, transient-like behavior in several	 known-

galactic sources.	 In addition, the galactic originsuggested by the

earlier transients has been confirmed, with the over-all collection of

i

transients consistent with an approximately uniform distribution in the

galactic plane at distances d 	 1	 Kpc.	 We propose that the observations {

f are consistent with at least two distinct sub-classes of transient X-ray
r

)(3)'!
h	

sources,	 including:	 (1)	 intrinsically bright 
(Lx,max
	

1038 erg s -l ti L E

long-lived(T
d
	l month) sources occurring at the rate of ti 1-10 yr-l;

3The Eddington-limited luminosity (L) is defined as the maximum, accretion-
Egenerated source flux, obtained whentheradiation pressure becomes equal

to the gravitational force on an i.nfalli'n^	 9	 9 particle;
M	

9	
-1

LE w 1.3 x 103
8 

(Mx) 
er	 s	 a w

o

!
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CHAPTER	 II

EXPERIMENT DESCRIPTION

The Goddard Space Flight Center All-Sky Monitor is one of a complement

of six cosmic X-ray experiments aboard the Arie1 5 satellite, the combined

fields-of-view of which instantaneously cover most 	 of the X-ray sky
k

(see Figures 2.1	 - 2.3).	 Four experiments are aligned with (or at a

small	 angle to) the spin axis and include: 	 1)	 a rotation modulation

i
j	 collimator (RMC), operating in the energy range 0,3 - 20 keV, and capable

of determining positions to an accuracy of nu 2 arc i;iin for bright sources;

2)	 a high resolution proportional	 counter spectrometer with a 128 channel
I

pulse height analyzer, sensitive to photons between 2 - 30 keV; 	 3) a

a polarimeter/spectrometer operating in the 2-8 keV range and capable

of detecting a polarization of ,, 3% (for source brightnesses comparable a

to that of the Crab Nebula) and of conducting searches for pulsar periodi-

cities; and	 4)	 a scintillation telescope (ST) devoted to temporal 	 and

spectral studies of sources at energies'> 40 keV.

While these four experiments are devoted to a detailed study of

the small	 region within ti 100 of the satellite pole, the ASM and Sky

Survey Instrument (SSI) cover wide regions of the sky with ;limited spatial f

and spectral resolution.	 This latter experiment consists of a large
-a

area proportional counter located in the spacecraft equatorial	 region_

and scans an 	 20
0
 x 3600 wide band of sky on each satellite rotation.

The SSI covers the energy range 1.5 - 20 keV and is capable of conducting 1
x

a high sensitivity survey of the sky, obtaining source locations, intensities,

and spectra, i

l Except for a small 	 region (a ti 80 ) centered on the spacecraft South Pole. Al

13
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The All-Sky Monitor provides coverage of the remainder of the }

sky in the 3-6 keV band. 	 It is intended primarily for use as an early

detection system for transient events in conjuncti on with the other,
a

more sensitive instruments, and as a continuous monitor of variable r

and transient phenomena in the relatively bright (S ' 0.2 
scrab) 

galactic

sources.	 The ASM is the first true imaging_ experiment to be flown on

a satellite, with the imaging accomplished via a pair of X-ray pinhole

cameras, (each devoted to 1/2 of the celestial sphere) which utilize

position-sensitive anodes together with satellite rotation of the intrinsic
r

fan-beam response to uniquely assign the direction of an incident ionizing

event.	 Gas-filled proportional counters provide the detection medium,

with electronic thresholds and an acceptance window defining a maximum
a1	

response to X-rays in the 3-6 keV band.

'	 I	 Weight and data restrictions imposed on Ariel 	 5 result in a much j

lower ASM data rate (ti 1 bit-s -1 ) than that of more sophisticated

experiments (e.g., the bit rate on the GSFC OSO-8 X-ray experiments

1	 K bit-S-1 ), with a correspondingly low duty cycle for source obser-

vations (ti 1%) and no spectral information obtainable within the 3-6 keV

acceptance window.	 Spatial and temporal resolution have been sacrificed

at the expense of all-sky coverage, with an optimal	 (,coarse mode) angular
i

resolution of	 oe_ti 50 and temporal resolution of otr ti 100 minutes (= one

l
orbit), respectively.	 The remainder of this Chapter is devoted to a

i

detailed description of the experiment.

A.	 Position Measurementi

Several techniques for determining the direction of incoming nuclear

'	 particles or high energy photons have been devised in recent years,

including measurement of pulse arrival times along a helical	 cathode
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i	 delay line (Lee and Sobottka 1973), and measurement of the risetime
a

_-

(Borkowski and Kopp 1968) and/or amplitude of output voltage pulses

from a highly resistive anode (Desai and Holt 1972).	 While the first

two methods dictate relatively complicated electronics and substantial

power requirements, simple charge division along a highly resistive

anode can be accomplished in a comparatively straightforward fashion l

with a combination of charge-sensitive preamps and a pulse-height measure-

ment circuit.	 A simplified schematic circuit diagram illustrating the

principle of operation of a position-sensitive anode`s shown in Figure

2.4.	 An event incident at point P along the wire causes _charges QI

Q	 and 
QII	

LLX	
Q to be collected in the respective pre-amps,

where the total charge Q is a function of detector gain, photon energy,

j	 and anode resistance. 	 The position of the event (X/L) is determined

by measuring the ratio of the voltage signal	 (proportional	 to the charge

;a

collected) from one of the pre-amps to the sum of the outputs. 	 Note

that the sum is required if the determination of X/L is to be independent j

of X-ray energy E	 and internal gain and energy resolution of the detector.

I
Pulse rise times and amplitude characteristics for the type of resistive

I

anode proportional counter used in the present experiment are shown in 	 +

Figure 2050

The measurement of the voltage ratio is accomplished via standard

ramp rundown analyzing techniques (Streeter 1973), and a block diagram

illustrating this part of the circuit is shown in Figure 2.6. 	 To optimize'

the position resolution of events along the wire, a highly resistive

anode of uniform resistivity is essential. 	 Quartz fiber with pyrolytically

deposited graphite (diameter = 25 um; resitivity/unit length = 1 MO cm-l}

is capable of position discrimination of better than 1 mm along 'a 30 cm

f
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(active length) anode (
A
.^	 ti 0.4%, Desai and Holt 1972), and was employed

in the detector.	 The position information (contained in the ratio

VI
is translated via an analog-to-digital converter into a

VI	 +'	 III

6-bit spacecraft latitudeaddress with one bit indicating the counter
i f

and the remaining five specifying the event position (i.e., a total 	 of

25 = 32 locations per anode are possible). 	 This information, together
t;

with a similar address specifying the spacecraft longitude of the event I

(discussed below) is then transmitted to the data storage area ("core

store") alotted to the ASM.	 A comprehensive block diagram of the experiment

electronics is illustrated in Figure 27.

B. 	 X-Ray Pinhole Camera

1.	 Optimal Geometry and Design r

Given the capability to define the position of an ionizing event
i

along the resistive anode to sufficient precision, imaging of the X-ray

sky is accomplished.via "light-tight" (for X-rays in the energy range

_	 of the experiment,	 2 --8 keV) boxes with "pinhole" apertures in one

corner, as shown in Figure 2.8.	 The relative dimensions of anode, length

pinhole area (a2), detector element area ( b2 ), and pinhole-anode

separation (h) are constrained by considerations of optimum sensitivi ty2

I'	 and weight restrictions.	 It can be shown that (cf.	 Holt 1976) fora

total	 background dominated by contributions from the isotropic, diffuse
2 2

X-ray "background"	 (DB	=	
D 
	

a 
2 —), , the sensitivity is optimized

o	 h
by the condition a	 b, dependent only on the aperture-detector distance h

2Signal-to-noise ratio, S.N. =`S/A, where S and B represent source

and total background counts, respectively.

f 	 _



r
demonstrated that the condition a	 b results in maximum sensitivity

for the case of background which does not arise primarily from incident

X-rays (internal background I B	IB b2). We thus have the result that

the pinhole camera sensitivity is optimized for a ti b whatever the primary l

source of background.

The final experiment configuration was fixed by satellite constraints

(e.g., weight, volume, and data allowances) which dictated an aperture

i
size a2	1 cm 

2, 
aperture-anode distance h	 15 cm, and corresponding

active anode length Q = 30 cm for a one-dimensional 90 0
 field-of-view

(see Figure 2.8). The box enclosing the detector (including a dividing

wall between the two cameras) is constructed of nu .1 mm titanium backed

with aluminum (to absorb the K fluorescence of the titanium) in a honeycomb

structure. This results in a relatively low-weight, rigid, light-tight

I	 ,

(E ti 2'- 8 keV) enclosure as required by the experiment. 	
x

2.	 X-ray Imaging

As the available space aboard the Ariel 5 did not allow a stationary i
5

array of multi-anode proportional counters to image the sky, the combined

intrinsic fan-beam response of two single-anode pinhole cameras (Figures

2.8 and 2.9) was utilized together with the satellite rotation for this

purpose. The celestial sphere is thus scanned by the detector on every

rotation of the satellite (Prot % 6 sec).
f1	 The division of the sky into "resolution elements" was again dictated

by the space allotted the ASM in the satellite core-store memory., A

total of 576data words were divided into 512 "fine" ( 8-bit) and 64

"coarse" (16-bit) locations for count accumulation. Incident ionizing

I
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1

X-ray events are assigned to the appropriate core-store location on the

basis of their position in the spacecraft coordinate system. 	 The spacecraft

jf

latitude (D) and longitude (A) of an event are defined by its position

along the anode as described above, and by the phase of the satellite

rotation relative to the sun (Asun = 0 0 ), respectively. This latter

coordinate is obtained via a system of sensors which are used to determine

the position of the sun; the satellite rotation is then divided into

equiangular longitudinal sectors by an onboard "sector generator".

Although the inherent resolution of the anode and the available electronics

allow division into 64 separate_, equal-length segments, the tactical

decision was made to allocate the 512 fine locations to 16 latitudinal

elements	 (8 per counter) and 32 longitudinal 	 sectors	 (AA = 11°.25)o	 The a.

latitudinal elements were defined in such a way as to be generally con-

sistent with a uniform source sensitivity over the anode. 	 This was

accomplished by decreasing the latitude extension of elements closer

to the satellite equator where source exposure is least to correspondingly

lower the internal background. 	 "Dead bands" were introduced at. the

spacecraft poles and equator (anode extremities) where the pinhole apertures
t

are least efficient (resulting from poor spatial 	 resolution at the poles

and minimal source exposure at the equator).	 In addition, other experiments

onboard the spacecraft with higher sensitivity than the ASM view in
i

f

these regions.	 The final nominal	 latitudinal	 borders were determined

as shown in Figure 2.10 and theover-all	 imaging scheme is illustrated

in Figure 2.11, which shows the 512 resolution elements in spacecraft

coordinates.	 The average element subtends a solid angle of ti	
47T

1
(ti 100 x 100 ), and the typical source image size of ti3

0
 x 50 therefore

mayylies- that a source	 divide between as many as four elements (but

s
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usually contributes to only one or two). The relative source image-

resolution element dimensions are illustrated in Figure 2.11.

C. Energy Characteristics

1.	 Detector Response

The energy response of the proportional counters is a function
1

both of the fill-gas (compositon and pressure) and of the sealing window.

A P10 gas mixture (90% argon, 10/ methane) at a pressure of 1 atmosphere

was employed, resulting in a peak opacity to X-rays of energy E
V
 ti

3.2 keV. A relatively thick (5 mil) Beryllium window was selected,.

Although this results in a minor sacrifice of efficiency, it reduces

the rate of gas diffusion from the counters and also increases the long
tl

term stability of the window response (this is essential as the data

limitations do not permit more than a single energy channel). The trans-

mission of photons by the window (thickness	 x, absorption coefficient

u) varies as S
trans "' Sinc exP 

( - uBe(E)x), which when combined with

the P10 absorption curve produces the net energy response 3 to a "flat"

X-ray beam (aE inc = constant) shown in Figure 2.12. Finally, because
- of the relatively severe data limitations it was impossible to 'take

advantage of the inherent energy resolution of the proportional counters

E 
ti 16% FWHM for fe 55 at 5.9 keV).

2 4	Mean 3 - 6 keV "Efficiency"'

One of the primary ASM objectives is to measure detector-independent'

!	 incident photon fluxes in the nominal (3-6 keV) energy range. Electronic

The detector energy response, i.e., the fraction of incident X-rays

detected as a function of energy, is the product of the window transmission
S	 (Be, window) x S	 (P10 gas).and gas ionization efficiency: R(E) 	 trans	 abs

S .;
inc

-r
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thresholds are established at 2.5 and 7.5 keV (energy equivalent at

nominal gain) by rejecting sum pulses outside of a fixed voltage range,

Fluxes may be computed in terms of effective (incident) 3-6 keV photons

via a mean efficiency, e, obtained by folding known, representative

source spectra through the detector energy response. The mean efficiency

is formally defined as the ratio of source photons detected to the total

number of incident source photons (3-6 keV)

6 keV
Sine (3-6 keV)

	

	 t	 S(E) dE

3 keV

7.5 keV`
A

I	 f g

	
S(E) 

R (E ,E -) dE^,

2.5 keV'
ag	 i

where S(E) R(E,E'), and A9 are the incident source photon spectrum

(photons cm- 2 sec- I keV- l ) detector energy response (,Figure 2.12), and

detector gain (a function of gas pressure and high voltage setting;

Ag, nominal	
1), respectively. The variation of s as a function of

detector gain is shown in Figure 2.13 for three representative source 	 t 3
a

spectra, viz,: the Crab Nebula (S(E) « E 
2 

cm '^s -1 keV -1 , Boldt, Desai,

and Holt 1969); Sco X-1 (S (E) a E -1 _exp(-E/5.5 keV) cm 
2 s

-1 keV-1,

Holt, Boldt, and Serlemitsos 1969) and the diffuse background ( S(E)

i	 E-1'4 cm-2s 1keV 
l 
steradian -1 , Boldt etal, 1969). It is apparent from

l
Figure 2,12 that the gain can change by as much as a factor of ti 2 (from

j the nominal value) before noticeable degradation in the detector 3-6 keV

efficiency for typical sources may occur.

3.	 Calibration

Due to the diffusion of the counter gas through the Beryllium windows,

s
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the gain will increase slowly in time with a corresponding degradation

in detector efficiency. As there are no calibration sources onboard

the spacecraft for the purpose of monitoring variations in gain, two

natural	 "calibration" sources are employed. 	 The Crab Nebula, as a result
r

of its stable spectrum and virtually constant flux (over timescales >>

experiment lifetime), represents one such source. 	 The average internal

background is also a useful 	 indicator of the gain since the relatively

}	 flat spectrum of charged pa'rticies producing pulses in the 3-6 keV band

will result in an inverse variation of internal background with gain

(the equivalent energy width, Supper	
Slower' defined by the electronic

thresholds is inversely proportional	 to Ag ).	 If a significant degrad-

ation in the detector efficiency is indicated by a long-term decrease

in the measured intensity of the Crab Nebula and the average level of

internal	 background, four discrete high-voltage settings are available

to return the gain closer to the nominal value in the affected counter(s).

As the electronic thresholds are fixed in voltage, switching the high

voltage modifies both the region and extent of the energy response

curve sampled by the experiment and hence the energy equivalents of $

the thresholds, as illustrated in Figure 2,14. 	 It can be ,seen that an

increase in gain effectively results in a shift to the lower energy,

portion of the response curve, thereby requiring a lower high-voltage

setting to return to nominal	 gain and efficiency (see also Figure 2.13).

D.	 Background

As discussed above (optimization of detector geometry), there are

primarily two different types of background which interfere with the

{	 detection and measurement of sources. 	 Internal background is defined

I
as that component of the noise which arises from triggering of the counters

f
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I

3

by high-energy charged particles, and has been minimized in four ways.
	 {

1

Two of these are provided by the Ariel 5 satellite and consist of: (1,)
	

a

a relatively clean, near-equatorial, roughly circular orbit (inclination 4

2.80 ; altitude	 520+30 km); and (2) radiation monitors which are used

to disable the experiment high-voltage whenever pre-selected threshold

levels are exceeded (as occurs regularly within the well-known "South

Atlantic Anomaly low-latitude extension of the trapped radiation belts)

The other two techniques employed to maintain a low internal background

are designed into the detectors themselves and involve rejection-of

events at the anode ends (outermost u l cm) and active anti-coincidence

cells which completely surround the position-sensitive volume on all

sides except that facing the Beryllium window, as shown in ,Figure 2.120

Since the internal background rates should be independent of the phase

of the satellite rotation (i.e., spacecraft longitude), the mean charged

particle contamination per latitudinal element may be measured for each

5

orbit as described in the next Chapter. The "diffuse background" consists

of actual X-ray events arising from the approximately isotropic diffuse_

X-ray background and is a function of the 'solid angle subtended by a

detector element and earth occultation of that element. This component

must therefore be computed for each element on an orbit-to-orbit basis

as outlined in Chapter III.

The sun occasionally represents an additional source of contami-

nation (when not in the equatorial band of the spacecraft), as solar
A

X-rays may scatter into the pair of longitudinal sectors centered on

4Inclination E angle between earth equatorial and satellite orbit planes.

v

i
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j	 the sun (see Figure 2,11),	 However, the solar image is always well-

localized and does not introduce appreciable background into the remaining

496 resolution elements.	 Another sun-related source of X-ray background

is that of auroral	 X-rays originating in the eart'h's atmosphere, coincident

with major solar flares. 	 The presence of occasionally large auroral

X-ray fluxes has a'Iso been reported from the SSI (Seward et al. 1976). t

When such contamination is indicated the data is recorded but not included

in the analysis procedure. 	 Finally, under the general description of

(	 "background" is the possibility of "bi t errors" occurring during data

j	 collection and/or transmission to the ground tracking stations. 	 The

possibility of such errors going undetected is negligible due to the

I	
storage of each event into two separate sets of data accumulation registers

corresponding to the 512 resolution elements and to 64 longitudinal

sector counters (sum of 8 latitudinal elements)-. 	 As this summing is

performed at the front-end (i.e., each ionizing event is registered in

both accumulators separately), telemetry errors are easily identified

by disagreement of the _individual	 and sum counters.	 This capability

also enables measurement of very strong sources	 (i.e., > 256 counts/orbit) {

which would otherwise be limited by the resolution element capacity of

2 8 - 1 = 255 counts 	 (a given element recycles to 0 wi th the 256th count).

.	 E^	 Octant Mode

The preceding description applies to the normal experimental 	 mode
1

of operation ("All-Sky" mode) in which the 512 "fine" core store locations

are devoted to nearly the entire sky. 	 Another, finer spatial resolution

mode ("Octant'"` mode), in which the 512 detector elements are restricted
1

to only -, 1/16 of the sky (see Figure 2.15), 	 is available upon command..

The effect is to increase the resolution in both, spacecraft latitude

,;y

..	
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a

and longitude by a factor of % 4, resulting in a typical Octant mode

resolution element of approximately 20 x 2°. The subsequent ability

to resolve sources as close as -4
0
 and an effective decrease in the

local source background result in an increase in the ultimate experimental
a

sensitivity to the approximate level of 0.05 cm- 2 s -1 {ti 40 UHURU cts

s -l ) as compared to the All-Sky mode threshold of ^ 0.1 cm- 2s -1 (non-confused

regions). As this mode violates the prime objective of continuous full

sky coverage, however, it is used sparingly for the purposes of finer

position determination of transient phenomena, detection of emission

from weak sources, and resolution of sources 'in confused sky regions

(e.g., Galactic Center).

F. Satellite Operation

The Ariel 5 was launched from the San Marco launch platform in the

Indian Ocean on 1974 October 15. In lieu of the conventional tape

recorder, which frequently limits the satellite useful lifetime, a

unique core-store memory unit is employed to collect data during the

sunlit portion (,- 3500 seconds) of each - 100 minute orbit. Data cannot

be transmitted to the ground in real time, and the core-store is normally

	

	 1
k

"dumped" during passes over tracking stations at Quito, Ecuador or Ascension

Island (South Atlantic Ocean) on each orbit. The satellite rotates at

an average rate of % 10 revolutions min 	 and the spacecraft attitude

(spin axis pointing direction) is determined on each orbit by a combination

of star trackers and sun sensors. A large degree of maneuverability

is provided by a gas-jet system and back-up magnetorquer which enables

a relatively rapid response of the satellite to transient phenomena in

i	 new or existing sources. A long-range viewing program is adopted and

ai

E^

i

^Y'z
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revised each month and is formulated primarily upon objects of interest

for viewing by the pole-aligned and SSI experiments.	 The only constraint

upon spacecraft attitude is dictated by the _solar cells which must be

aligned within 450 of the sun for proper charging ' of-the spacecraft's

rj battery supplies. Figure 2.16 represents a block diagram of the major

components of the spacecraft systems.
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DATA ANALYSIS

In order to accomplish the tasks of detecting new sources and measuring

the flux of existing ones, a number of factors must be considered.	 Several

of these have been mentioned above, and the broad group of experimental

factors may be divided into the general classifications of:

j (1)	 computation of effective source exposure time, including correction

I
for variation of source exposure with spacecraft latitude;

(2)	 determination of diffuse and internal 	 background levels; and

(3)	 calculation of geometrical 	 factors, including the spacecraft location

and "splitting" of sources into several	 resolution elements and correction

' for possible detector offsets.

A.	 Source Library

X-ray sources have been compiled into a library which is used as

input to the various analysis programs.	 This library includes sources

4 oobserved`by the UHURU, OSO-7, OAO Copernicus, Ariel 	 5, SAS-3, and OSO-

I
8 satellites,	 Other potential	 X-ray emitting objects	 (e.g., earlier

i
transient sources, optical novae, radio pulsars) are also entered._ As

source fluxes are typically specified in units of equivalent UHURU counts

!
s-1,	 a conversion factor to incident 3-6 keV P	 9hotons cm Z s -1	 is required.	 tti

1

The computation is performed in Appendix A, with the result

K	
=	 ASM 3-6 ke'V photons cm- 2 s 1	 __	 _3

15 +5	 10	 th-	 .	 ,	 x	 where	 e error
UHURU counts s-1, -	 `

arises primarily from uncertainties in source spectral 	 shape.	 Typical

flux levels and variability of the brightest 80 library sources in ASM

units are shown in Table 3.1 	 (for comparison, the UHURU minimum intensities 	 i

of Sco X-1	 and the Crab Nebula are 6800 counts s
-1	

and 947 counts s-1,

respectively).	 The source catalog is continuously updated -to include

26
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newly discovered transient sources as well as previously undetected quasi-

stable weak sources.

B.	 Computation Factors t

1.	 Source Exposure r

The effective exposure time of a source to the ASM during an orbit ri

is -a function of the detector on-time (which in turn depends on the orbit L

duration and the presence of large charged-particle fluxes which trigger u

high voltage-disabling background rate flags), earth occultation, and k
u

source spacecraft latitude. 	 Thus, a particular (i th ) source will be r

'ON'	 for a time

(i )]	 *	 LCOR (D i )sTs M	 ^Tdur	 TdiF	 s

where

Tdur	 -	
Orbit duration,

Tdis ( i ) _ "Disable" time of i th source
;;	 l

Tecl	
(Eclipse time) + Tflg (Background rate' flag duration)

+	 Tocc M (Earth occultation time of it
h source),

E _

and

LCOR (Di ) = Latitudinal correction factor for i th source (spacecraft

Latitude Di)o

j	 The orbit duration, eclipse time, and duration of background rate

r..	
flags are computed from an event-time array generated by the various

satellite sensors. 	 This array consists of event codes indicating eclipse

entry/exit, background` rate flag enable/disable, start/end of orbit,

power on/off, and the times corresponding to these events. ` In addition,

experiment power, sunlight/eclipse bits, and housekeeping information

;,.	 (high voltage and anticoincidence rate analog parameters) are recorded

i _
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at 1000 second intervals throughout the orbit. 	 The computation of the tr
_

net detector disable time from the event-time array is relatively straight-
t

forward, but care must be taken to correct for overlapping disable periods

(e.g., source occulted with background rate flags ON).
I	 l

Intervals within the sunlit portion of an orbit during which a

source is occulted by the earth 
(Tocc 

(i)) will	 vary from source to source,

being	 a function of the source position (R.A.; 	 Dec.), sun position	 - -

7
(R,A.; Dec), and orbit parameters	 (radius, inclination, and X-ray scale v

height of atmosphere).	 The computation of source occultation times ~

consists of finding both the fraction of an orbit that the source is

{ occulted by the Earth and the phase of the occulted portion with respect
k

to the sun.	 This procedure is outlined in appendix B and results in

the generation of another set of source 'OFF' times which are combined

with the detector disable times (i_.e., experiment high-voltage OFF) 	 from

the event-time array to compute the individual 	 source 'ON'-time for the

orbit.	 Alot-of the mean unocculted fraction ( 	 ) vs. angular separationP	 n	 9	 P

from the sun for several sources of interest is shown in Figure 3.1.

The latitudinal	 correction factor (LCOR) arises from the geometrical

property of a scanning aperture that as the elevation of a source approaches

the rotation axis it remains in the detector field-of-vi`ew for an increasing

fraction of the satellite rotation,,	 Using the definition LCOR (D)

., ^ionTr(D	
where ^1on(D) _ FWHM of triangular longitudinal	 "extent"'	 of

a source, it is clear that the latitudinal 	 correction factor approaches

l Note that this is not the same as the static "fan beam" response, ^f
(see Figures 2.8 and 2.9).

5
.a.,,	 .,....	 . .......	 ......	 _	 ..w,. .,_	 .. ,..._..	 ....	 , ..	 -.v,. >,..,..........e.u.,. 	 n.^y„a...^._.a.Ua.rw u,.a. w,u.,.. ,,,..,.^.,e..,.	 .....	 . ..,a	 .. a.,	 ,......_..	 .,	 _
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the limiting values at the spacecraft equator and pole of LCOR (D = 00)

^ I on(Oo 	_ ^ ( 0')/ 2 	(900) ^,
2Tr	

f	
= 0,0075, and LCOR (D	 90°) =	

ton	 ti
2 ^	 21T

2—^^	 1, respectively. It should be noted, however, that for source

elevations within the ASM field-of-view (recall 
Dmax^' 

850 ) the effective°

o	 ^lon(85)
limiting value is considerably reduced, viz., LCOR (D 	 85)	

2Tr

3 30	i

= 27r	
0.092, A detailed derivation of a general expression for LCOR (D)

is presented in Appendi x C and is plotted in Figure 3.2.

20	 Background Correction

As discussed earlier, background counts arising from the diffuse

X-ray background and from energetic charged particles contribute to

the net experiment counting ratesand must therefore be subtracted from

the data. The expected contribution to -a resolution element from the

diffuse X-ray background (assumed isotropic; see Schwartz, Murray,

and Gursky 1976) may be computed from the 3-6 keV effici"ency ( E ), the

net (jth) element ON-time (Te(j)),and the "geometrical factor" (G

Imo, Ci	counting rate of i th latitudinal element (i	 1-8 9-16)
0
and I o = intensity of isotropic source). This latter quantity is pro-

portional to the solid angle subtended by a given resolution element

and is thus a function of the aperture and detector element dimensions

and aperture-anode separation. As outlined earlier, the spectrum of

the diffuse background integrated with the detector response between

the nominal 2.5 - 705 keV energy thresholds results in a value of E =	 j

0.6. The net element ON-time (T
e (3)	 (Tdur	

Tdis(l))/32) is determined

as in the preceding section with the "source" coordinates defined by

the center of the element. In this case, however, the factor LCOR = 1,

independent of the element spacecraft latitude. Using the geometrical

a	 z
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factors derived for the pinhole cameras in Appendix D and listed in Table

_3.2 the expected contribution (detected counts) to an element due to the

diffuse background is:

Ndb	
-	 G i * e Io * Te( j ) where

6 keV	 r '

1 	 =	 f	
7 

E-1.4 
dE (cm2 sec keV Sr) -1	l'

3 keV

= 2.73 (cm2 sec Sr)-lo

3,  e (	
=	 00For a typical (	 6000 second) .orbit with T j) 	 seconds, elements

adjacent to the D = 45
0
 border (Gi = 0.01) will receive only ti 2 diffuse

background counts.

"Internal" background (i.e., that component resulting from high

energy charged particles) levels vary with a number of factors, including

particle densities, anode length corresponding to-a-detector element,

and net detector ON-time. 	 Since this contribution is expected to be inde-

pendent of the relative phase of satellite rotation, each latitudinal

segment of the anode is analyzed individually in both counters on an orbit-

to-orbit basis. Evaluation of the mean particle background per latitudinal

segment is accomplished by first rejecting any of the 32 longitudinal elements

which are expected to receive counts from library sources-. The expected
l

diffuse background contribution to the remaining elements is then subtracted

from the detected counts and the excess attributed to charged particle

contamination. The mean particle background for that latitude is finally

f,	 calculated in an iterative manner by successively rejecting all elements

that deviate from the previous mean by more than + 36. Typical internal

background rates per element (6000 second orbit) vary from u7 counts near

i
the spacecraft pole (longest anode segments) to 'u 1-2 counts in the

3	
,

a
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near-equatorial elements.	 A relatively high level of particle contamination

('u 4 counts/element) has been observed in the equatorial segments and

attributed to anode end effects.

3.	 Spatial	 Response

The technique employed in the ASM for mapping the X-ray sky into
r

a 512 resolution-element (n,10 
0 

x 10 
0

in all-sky mode) image has been

i

described in Chapter II.	 As sources frequently divide into 2-4 elements, a

knowledge of the detector latitudinal 	 and longitudinal response is necessary

to compute the fraction of the total flux contributed to each element, a

The source position in spacecraft coordinates is obtained via a simple {
a

transformation of its celestial	 coordinates using the satellite aspect

solution and the position of the sun. 	 The spatial	 response of the detector
1

to point sources is illustrated 'in Figure 3.3. 	 The latitudinal	 response

is flat, representing simply.the "shadow" cast by the pinhole onto the

anode.	 As shown in Table 3.3 the latitudinal extent o6	 of a source

is greatest at spacecraft latitude D = 45 0 and decreases toward the pole

and equator.`-' It is readily observed with reference to Figure 3.3a that

the relative contributions of a source splitting between two latitudinal
f

regions a and b	 (borderline D ab )	 are

Fl at	 Dab -	
6 1^	 and	 Flat	 Dab -	

621, 
where 46 =	 le	 -	 e' 1

oe	 oe	
2

t	

(note that	 E	 Flat	 1)'

Calculation of source splitting in_spacecraft -longitude is slightly

more complicated, since the detector response is now triangular (as opposed

to flat) as shown in Figure 3.3b. 	 In addition, the increase in longitudinal

extent of sources with increasing spacecraft latitude (see Figure 3.4)

must also be taken into account.	 The fractional source' contribution
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(F I on) to a longitudinal element is obtained by taking the ratio of the

area under the response curve within the element to the total area,`

lon (D). Thus, the total fractional source contribution to a detector

element b is given b y 
S b	 _ Fb	 b

g	 frac	 tat * Flon'

4.	 Spatial Offsets

During the initial months of ASM operation it became evident that 	
C

"offsets" (<10) in the detector geometry (latitude and longitude) exist,

as determined from the relative splitting of Sco X-1 and the sun. While

the exact origin of these errors is uncertain (aspect errors, experiment

misalignment, electronic offsets on the anode, and imprecise sector

generator are all possible contributing factors), steps have been taken
1

to empirically compensate for them. To correct for the latitudinal' error,

permanent offsets for each counter have been estimated and a program

which compares the expected and actual latitudinal splitting of Sco X-1

is used to "readjust the spin axis (up to l o ) such that agreement is

obtained. Longitudinal offsets are introduced when indicated by poor

spatial fits to sources (primarily Sco X-1 and the Crab Nebula) and consist

of a small "rotation (ti 1 0) of the detector in spacecraft longitude.
t

C. Source Measurement and Detection

1.	 Flux Measurement;

Fluxes are assigned to known X-ray sources on an orbit-to-orbit 	
LL

basis as follows:

	

	 3
a

1) the source library is mapped into spacecraft coordinates and

the exposure and relative splitting ofsources within; the detector field

of view are computed;;

2) each of the elements corresponding to the source ?under examination

is checked for the presence of other contributing sources, if less than
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90% of the expected counts (based on maximum library intensities) in an

element are due to the source in question the element is rejected in

the redefinition procedure;

3) the counts (background corrected) from the elements satisfying

the 90% criterion are summed, as arethe corresponding sourcefractions

M=1 2 or 4

4) the ( j th ) source flux is computed from S O 	(^	 C^) /F^,
i = 1

where
M

F^	 ( E S^	 ) * T
O

 * LCOR^ * e * Ap , and
i=l frac

Ci	 O i - Bi (Detected-Background counts, i th element),

Ap Projected pinhole area

(=- 1 cm2 * cos D - ff/ 4 ,1 ) and
y

T s , LCOR, £, and 
Sfrac 

are as defined earlier;
-i

5) the error in this measurement is taken as the 1a Poisson

[EM	
i i1/2

statistical uncertainty, Errs_1 (0 	
B )
	 /Fi; and

6) the measured flux is folded back through the detector response

and the resultant expected counts compared to the detected counts; if

(due to offsets or other systematic errors) any of the source elements

are consequently found to be >3cr below the expected level, the computed

flux is successively decreased until this condition is eliminated or until

the source is redefined back to its minimum library intensity.

As _a result of the intrinsically low single orbit source counting

n

^	 rates (C (Sco;X-1) = 150 - 500 counts/orbit) the satellite capability

of maintaining a fixed orientation ` (A0 < 0.50 ) for periods ti 1/2 day is

utilized for the purpose of combi ning up to 7 orbits into ,.,1/2  day

"accumulations". The resulting factor of	 improvement in counting

i
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statistics at the expense of temporal resolution correspondingly increases

the effective experiment sensitivity with respect to the detection and

monitoring of relatively weak sources (S 6 
0.5-Scrab)' 

Longer accumulation

periods, although allowed by the slow drift rate of the satellite spin

axis, have not been employed due to the apparent motion of the sun ( nu lo/

day),

?	 2,	 Source Detection
i

The detection of new sources (or dramatic variations in catalogued

sources for which intensities are not normally uniquely assignable due

E

to source confusion) is conducted via daily inspection of the data and	
{

use of a computer routine designed to search for significant deviations

from the expected counting rates in each resolution element. The array

of expected counts (E) is derived from the estimated contribution of

sources (defined at minimum library intensity), the diffuse X-ray background,

t	 and the measured internal background. This array is then subtracted

from the 512-element matrix of detected counts (O i ), and the number of

standard deviations computed from DEV i = (0 i - E i )/V-E—. All elements

for which IDEV i ( ti3 are noted together with the contributing library	
t

sources (if any).

On the basis of'ASM observations of known weak 'sources (e.g., Her X'=1)

an experimental source threshold (all-sky mode accumulations) of ti0,1 	 `•

cm
_2 

s 1 has been estimated for "clean" sky regions, increasing to

0,5 cm
-2
 s -1 in moderately confused regions (e,g., Aquila-Serpens).

TheThe effective all-sky mode threshold is significantly higher ( n.045	 3

cm_2 s_1 in the proximity (oe s ti 50 ) of strong, variable sources or in

highly', confused regions of the galactic plane. As mentioned in Chapter

II, the limiting detection threshold is realized by application of the
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octant mode (1/2-day accumulations) in relatively unconfused sky regions,

at an estimated level of = 0.05 cm-2s-l.

D. Experiment Performance

L	 Spatial and Energy Response
t

Part of the raw data from a representative orbit is shown in Figure

3.5 to demonstrate both the appearance of the X-ray sky image obtained

by the ASM and the quantum-limited nature of the data. Although this

orbit is of average duration and background levels, it is in reality

somewhat atypical in that the five sources indicated happen to be confined 	 -.

almost entirely to single resolution elements. Of particular relevance

is the typical counting rate from Sco X-1 of approximately 300 counts/

orbit in contrast to the roughly order of magnitude smaller fluxes of

the next brightest sources. These statistics underscore the fundamental

limitation of a 1 cm2 aperture telescope with an average duty cycle (per

source) of ti 1% and emphasize the necessity of low counter background

and stable energy response for meaningful analysis of the data. A complete

computer' output for one orbit ("core dump") of data showing the source

ON-time and count arrays, spacecraft housekeeping' data, etc., is given 	 i

in Figure3.6. The improvement in counting statistics and signal-to-

noise ratio resulting from integration of the single orbit data is

illustrated in Figures 3.7 and 3.8 which represent ti1/2 day accumulations
l	 ,

of all-sky and octant mode data, respectively. The finer spatial` resolution

attainable in the octant mode is also demonstrated in Figure 3.8 where''

the nearby (oe s	 50 ) sources Tau X-1 (Crab Nebula) and A0535+26 are

reasonably well resolved,,



I

36

Evaluation of the empirical response of the detector for comparison

with the theoretical value and detection of possible variations in efficiency

is clearly important. Good agreement between the computed (nominal gain)

and the actual ASM response over the > 2 year lifetime of the experiment

is reflected by the fact that the majority of observable UHURU sources

monitored by the ASM have been measured within their quoted (3U) limits.

Long term daily averages for 4 of these sources (Sco X-1, Crab; Nebula,

Cyg X-2, and Cyg X-1) and the corresponding UHURU flux ranges are shown

in Figure 309. In addition, consistency has been obtained with several

other experiments operating in roughly the same energy range (e.g., SAS-3

I

r

i

i

{
r

and Ariel	 5 SSI) during concurrent observations of several 	 flaring and

transient sources.

The relative stability of the response is demonstrated by the measured

intensity of the Crab nebula plotted in Figure 3.10, which includes data

'	 (daily averages)- obtained from both counters 	 ("N" and "S" refer to spacecraft

northern and southern hemispheres) and at varying spacecraft location

(excluding polar, equatorial, and solar elements). 	 While it is clear

from this plot that a better fit. is obtained by dividing the data into r

two roughly year-long segments, indicative of an 	 ti10% increase in detector

A

gain	 (primarily in the South counter);,	 it is evident that the mean measured

flux fromthe Crab has not varied greatly over the ASM lifetime.	 In addition,

although X2 tests of this data (against the hypothesis of source constancy)

over timescales of % I year yielded unacceptable results, this may be accounted

for by the long-term variation in gain, mixture of North and South counter

data, and the presence of 'occasionally large systematic errors on shorter

e
,a

3
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timescales (due predominantly to low points resulting from spatial off-

sets)2,

As a test for possible differences (North/South) and long-term

variations in detector gain, several high-voltage calibrations have been

performed at different times in which the intensities of Sco X-1 and

the Crab Nebula are measured as a function of detector gain in each of 	
t

the four high-voltage settings. Reasonable agreement between the observed

4	 and expected variation of response with gain was obtained in all but the

last calibration of the South counter performed in 1976 July-August, shown

in Figure 3.11 (compare with Figure 2ul3). The high voltage of that

counter was subsequently changed to the next lower setting.

2.	 Sensitivity and Systematic Effects

The effective experimental sensitivity (and relative magnitude of

possible systematic errors) may be gauged by analysis of well-studied

phenomena in known sources. An excellent test of the experiment performance

is afforded by Cygnus X-3 which exhibits a stable (over timescales of

years) 4.8 modulation, As its intrinsic weakness (S 
max-u 

0°5 
Scrab)'

proximity to the strong variable, source Cyg X-1 (oe
s 

= 10
0
 ti angular

separation of adjacent all-sky mode resolution elements), and relatively

short` period (P -< 3 orbits) would all be expected to ` complicate the

.	 measurement of an unambiguous source intensity, the ability to detect

this modulation would indicate that systematic effects do not dominate

the experiment response. As discussed in; Holt ;(1976), folds of approximately

100 days of single orbit data from Cyg X-3 yield a smooth sinusoidal

This conclusion is supported by the fact that X 2 analyses of shorter
data segments ( .I month) from a single counter (and with smaller
apparent offset errors) have yielded acceptable fits.

1	 '



38

light curve which is consistent both in amplitude and phase with the

previously reported results of Parsignault et al. 	 (1972), Sanford and

Hawkins	 (1972),	 Canizares et al.	 (1973),	 and Leach et al.	 (1975), with

no significant modulation of Cyg X-1, utilized as a control 	 (see Figure r	 1

3.12).	 Several	 additional ASM results, including detection of a 5.6 modu-

lation 'in Cyg X-1	 (Holt et al.	 1976a and Fig. 3.13)	 and the 35d cycle x

of Her X-1, which at maximum is just above the experiment (all-sky mode)

flux threshold (cf. Holt et al.	 1976f and figure 3.14), confirm the basic

reliability of the observations and further illustrate the experiment

sensitivity,

Systematic effects arising primarily from uncertainties in the

satellite aspect solution, detector offsets, background fluctuations, ^	 3
1

source confusion, and variations in detector gain_are present in the

data and must be corrected for where possible. 	 As noted above, several

techniques are employed to reduce the magnitude of these errors	 (e.g.,

spatial offsets, observed response to Sco X-1, 90% redefinition criterion,

high voltage calibration, etc.), but in many cases they are irrecoverable

(e.g., imprecision of source ON-time calculation) and can therefore only
t

be estimated.	 Systematic errors in the measurement of individual sources

of interest may also be lessened on an intermittent basis, by operating

in the octant mode.	 As mentioned earlier, this mode is particularly useful

for the detection of source fluxes near the all-sky mode background level

f	 and for identifying sources in a crowded field (cf. 	 figure 3,8).	 Finally,

utiliz(	 i#an of nearby sources as a control	 and/or well-defined properties

of the source under investigation	 (e.g., an occultation period)	 represent

additional	 techniques for minimizing; systematic ` effects.

Ai
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CHAPTER IV

OBSERVATIONS

The X-ray light curves obtained for the pre-Ariel 5 transient sources

firmly established the nova-like character of the outburst, the magnitude

of which apparently differentiated this type of phenomenon from the com 	 r

paratively-stable emission (variability ti factor of twenty) of the 	 j

variable sources. Frequent extended gaps in source coverage, however,

i
severely limited meaningful temporal (and spectral) analyses of the

data. As discussed in Chapter I, such studies have been of prime importance

in elucidating the nature of the binary-X-ray sources (e.g. binary period

determination; detection of pulsation periods). In this Chapter, compre-

hensive X-ray light curves of three new transient X-ray sources which

were observable by the ASM are presented, and observations of additional

transient sources (not unambiguously measurable by the ASM) from other

instruments are summarized. The results of temporal analyses, particularly

for the brightest of these sources (A0620-00) are described, as well

as observational limits to their frequency of occurrence above an effective

detection threshold of = 0.3 
Scrab' 

In addition, recurrent, transient -

like
r	

like outbursts from known "variable" sources (Aql 'X-1 and 3U1630-47) appar-

ently intermediate between the transient and variable source classes

are examined. The diverse ravage of variability characteristic of the

galactic sources is illustrated in the long-term light curves of several

variable sources, ranging from the quasi-regular extended "high" and "low"

states 
(Shigh/Slow	

20) of Cir X-1, through the factor of u5 "transitions"

of Cyg X-1, to the gradual, long-term decrease (S	 /S	 ti 5) of Cyg X-3.
max min

Finally, the relative constancy of the base-line emission over a two year

period from the sources Sco X-1 and Cyg X-2 is contrasted with the previous

39
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A. Transient X-ray Sources

1.	 A1524-62(l)

Shortly after launch of Ariel 5 on 1974 October 15, a relatively

bright source appeared in the constellation Triangulum Australe near

I
the highly variable source Cir X-1. It was first reported to be at

maximum on 1974 November 22 from the SSI by Pounds (1974), when it was

out of the ASM field of view, Figure 4.1 shows the overall 3-6 keV 	
l

X-ray light curve constructed for A1524-62 via the ASM and SSI, which

clearly indicates that the November 22 maximum was only a precursor to
i	 1

a prolonged transient source which was above the ASM threshold for several

months (cf. Kaluzienski et al. 1975b). While the decline phase of A1524-

62( T d	2 months) is reminiscent of the earlier transients Cen X-4 (Evans,

Belian, and Conner 1970) and 301543-47 (Matilsky et al. 1972; Li, Sprott,

and Clark 1976), the prolonged and variable low-level activity (including

the pronounced precursor peak) prior to the onset of the main flare was

not observed in those sources. After its discovery by the SSI, a search

of earlier ASM data revealed a possible presence of the source as early

as 1974 October 28 (day 301), if Cir X-1 (with which it may be confused

in the ASM) was truly less than 50 UHURU counts s -1 at this time2o Obser-

vati,ons`of the SSI over the period 1974 November 10 - December 3 (day

314-337) show Cir X-1 at -a level of less than 10 UHURU counts s -1 and,

Also designated A1524-61D

2The likelihood of such an upper limit to the Cir X-1 flux at this time

has been strengthened by the discovery of a strong 16.6 modulation of

the source, characterized by "turnoffs" (Soff < 50 UHURU counts s-1)

lasting in excess of 8 days (se de below). The phase of the abrupt

downward "transition" of the 16.6 cycle implies a Cir X-1 turnoff on
1974 day 298.90



in fact, Cir X-1 was not detected by any Ariel experiment during the
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entire time displayed. 	 ►=

Periodic modulation of the flux from A1524-62 displayed in Figure

4.1 was searched for by folding the ASM data (with exponential decay

subtracted) over trial periods in the range 0.5 - 10 days and noting dev
2

iations in the x - period distribution (vs, the hypothesis of a constant

source intensity) 	 This procedure yielded no significant X2 maxima, with

a corresponding upper limit of ti 5% to any source modulation (peak to

mean sinusoidal amplitude) in the range of trial periods tested. In

addition, a fast fourier transform was performed on the ASM single orbit
i

data (subject to relatively large systematic and statistical uncertainties),

with similar results for modulation on shorter time scales 	 10% pulsed	 5
a

power for 0.2 < P (days) < 005), consistent with the results of Maraschi

I et al. (1976). If A1524-62 is an accreting (close) binary system, the

absence of X-ray occultations or any lower-level source modulation may

indicate a non-negligible orbital inclination and/or extended emission

region (relative to the optical companion). Such a conclusion is, in

fact, strongly supported by the recent identification of a dwarf-type
t

star as the source optical counterpart_(Murdin et, al. 1977).

Spectral information over the time of the precursor was obtained

4 by the SSI. In Figure 4.2 these data are plotted differentially in time,

with the upper trace the ratio of the low (1.2 - 5.8 keV) to the high

'

	

	 (2a4 - 19.8 keV) energy ` counting rates, and the lower trace their sum.

The increasing ratio to approximately 1974 November 22 (day 326) implies

a spectral softening of the source up until the precursor peak, after

which the ratio measurements are consistent with spectral stability.

Four channel pulse-height spectra obtained between days 328-330
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(November 24-26) were not fittable with an optically thin isothermal source,

but were each consistent with a common power-law approximation to the

source spectrum dN/dE	 (502 + 0.8) E-(2'5 ± 0.1) cm- 2 s -l keV- l o No

measurable absorption by cold interstellar material at a la upper limit
r

of 1.4 keV was detected.

The Triangulum-Circinus region has continued to be monitored in
3

the interval	 following the last measurements displayed in Figure 4.10
1

The relatively greater effect of systematic errors at these low flux

levels complicated by the proximity to Cir X-1 	 renders definitive measure- y

ments at levels ti 0.2 cm-2s 
1 

problematic.	 An independent measurement j

of A1524-62 on 1975 June 12 and 15	 (1974 days 528 and 531) at a level

of % 0.2 counts cm-2 s -1	 (1	 - 10 keV) was reported from SAS-3 (Jernigan

1975).	 A search of the,ASM data in the time between the _latter sighting
i

and the last measurements displayed in Figure 4.1 	 (1975 April	 5; - June a

12; 1974 day 460-528) yielded frequent upper limits of 	 O,l	 - 0.2 cm- 2 s -1 ,` 

with a possible 3 detection at these levels commencing on about May 7

1974 d	 92 .	 A source consistent with the position    o	 A1524-62 i s(	 day 4	 )	 f	 C ,

evident in the data through 1975 ,August ( ,-1974 day 600),	 and A1.524-62

has not been re-detected-(S ' 0.05 cm -2 s 1 ) in octant mode observations

spanning the period 1975 `October 29	 (1974 day 667) - 1977 January. 	 These

results are consistent with the SAS-3 observations and suggest that the
3

latter occurred during an extended low-level 	 ON-state (S = 0..1-0.2 Smax

of A1524-62 similar to the secondary maxima exhibited by Cen X-4 and

3UT543-47`

3 Flares of the nearby weak UHURU sources 301543-62 (S	 0.016 - 0.048

cm 2s -1 ) and 301510-59	 (S = 0.01	 cm-2s	 ) cannot be entirely ruled out,
as well	 as occasional	 confusion with Cir X-1.

Y



During an extended spin axis hold in Taurus between 1975 April

13-29 the transient source A0535+2.6 was detected by the pole-aligned

Rotation Modulation Collimator ('RMC') experiment aboard Ariel 5

(_Rosenberg et al. 1975). The nearness of A0535+26 to the bright source	
r

Tau X-1 (Crab Nebula) severely limits detection and measurement of this J

source at low flux-levels (S ti 0.2 cm -
2s- 1

 15% S) in the all-sky
crab

TM	 mode, as such levels are comparable to the statistical accuracy, in the

.'	 measurement of the Crab. However, the constancy of this latter source

allows measurement of the A0535 +26 flux, even when source confusion is

present, via subtraction of the measured mean flux from the Crab (Scrab

1.25:cm-2 s ^, see Figure 3.10), The light curve for A0535+2,6 obtained

by the ASM (Kaluzienski et al. 1975a) in this manner is shown in Figure

4.3. Immediately preceding spin axis hold in the Taurus region, the source

was not observable at an upper limit (la) of	 0.2 cm-2 s -1 (the Crab

Nebula was simultaneously measured at a flux of 1.4 + 0.2 cm -2s l),

with a comparable upper limit during the period 1974 October 	 1975 April.	 3

When first observable by the ASM on 1975 April 29 (day 119), A0535+26
a

was ti 35% more intense than the Crab Nebula, and maintained this level

for approximately one week. The time of peak flux has been established' 	 a

to have occurred at approximately this time (April. 29 	 May 2 Ricketts

et al. 1975). The source then decayed with an e-folding time
d
	19 d

until the Sun was too close for unambiguous separation. When the Sun	 #

had moved sufficiently far to allow the source intensity to again be

r
interrogated, it was found to be unobservable (i,e., S ti 0  cm s

-2 -1 
la).

Recovery phenomena, including at least two secondary maxima, have been

reported from the SSI (Pounds 1976a) and SAS-3 (Joss 1975). The most
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dramatic of these occurred on approximately 1975 November 8 (day 312),

with the 1-6 keV flux reaching ti10% of primary maximum for several days

(Rappaport et al. 1976). As discussed above, detection of A0535+26 at

such low flux levels is severely limited due to its proximity to the Crab

Nebula, and the source has not been detected above its effective ASM

threshold level over the interval 1975 July - 1977 January, during which

time no anomalously high measurements of the _Crab were made.

It is evident from Figure 4.3 that no occultations of the source

were observed. Folds of this data (with the decay trend subtracted)

revealed no periodicities in the range 0.5 < P(d) < 10 at an upper limit

of 'tilO% (fractional sinusoidal amplitude). This is consistent with

SAS-3 Doppler shift measurements of the source pulse period (see below_),

which require binary periods in the range 17 d ti P ti 77d (Rappaport et

al. 1976).

A0535+26 is distinguished from 'A1524-62 and the earlier transients

in several respects. First, the spectrum was characterized by a power-

law photon index of n = -1 (Ricketts et al. 1975) vs. 
ncrab	

-2.1, or

alternatively by black body temperatures of kT = 3 keV and kT - 8 keV
t

for the 3-7 keV and 26-73 keV energy ranges, respectively (Coe et al.

1975). Secondly, the source was found to be pulsing with a_period of

104 seconds (Rosenberg et al. 1975), with a pulse profile similar to

those (on shorter timescales) of Her X-1 and Ceti X-3. The consistency
f	 I

of such a modulation in A0535+26 with rapid rotation of the X-ray emitting

-object clearly favors its identification as a neutron star (vs. white

dwarf or black hole)	 Of `additional, interest is the tentative optical

identification of the source with the B;-emission star HD245770 (Liller

1975) based on the location of this object within the 1' Ariel 5 error
f	 .
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box (Rosenberg et al,	 1975).	 Finally, UHURU has reported a possible l

detection of A0535+26 at low flux levels	 (S = 12.7 + 3.8 UHURU counts

__
s	 = 0.02 cm 2s I ) as far back as 1970 December (Forman, Jones, and

Tananbaum 1976a)Q

3,	 A0620-00 1
i	

The last-of the unqualified4 transient sources to be studied by the

ASM is A0620-00 (Nova Monocerotis 1975), discovered by the SSI at S ti

0.005 x Sco X-1 on 1975 August 3 when the Orion-Monoceros region was

exposed to the spacecraft equator.	 A0620-00 is the first transient to

be unambiiluously identified optically (Boley et al.	 1976) and has also

been observed in the infrared and radio bands.	 As a result of the unpre-

a detailed orbitcedented brightness of the source 
(Smax ti 

4 x SSco X-1),

to-orbit light curve was obtained and sensitive analyses of temporal 	 vari-

ability on timescales of hours-months were possible.

a.	 Light Curve

Figure 4.4 is a semi-log display of the ASM A0620-00 data through

1975 November.	 The points obtained prior to November 21 	 (day 325) represent

single-orbit (ti0d07) measurements of the flux, while those obtained

afterward are	 r-112  day averages. 	 Error bars refect the + l a	statistical
T—

uncertainty which generally exceeds any possible systematic error in the

analysis of this source. 	 The arrows indicate onset of the emission and

approximate commencement of the decline (Elvis et al. 1975),	 reflecting

the relatively brief risetime typical of the transient sources. 	 The a

source first entered the field-of-'view of the ASM on August 20 (day 230), a
a

4 i.e.., satisfying all of the criteria in the operational 	 definition of

the transient sources outlined in Chapter I. -



ii

	46 	
.A

and the first group of points is roughly consistent with the fluxes at 	

i'
maximum light recorded by X-ray detectors with thresholds below 3 keV

(Elvis et al. 1975; Doxsey et al. 1976). A search for emission from the

source in the interval between launch of Ariel 5 and its discovery by

the SSI revealed no emission ti 0.1 cm -2 s
-1 

during the ti 70% of this time

interval that the source region was monitored by the ASM (cf. Kaluziensk

et al. 1977a). We can thus rule out the type of extended, low-level
	

Y

activity exhibited by A1524-62, since the above limit on early emission;

from A0620-00 is almost three orders of magnitude below maximum.

It is clear from Figure 4.4 that any attempt to fit the decay with

a simple power-law or exponential function yields an unacceptable result,

even when the secondary increase occurring in October is excluded. This

increase (representing ti 75% higher flux than that expected from an extra-

polation of the early September decline) is qualitatively similar to

the post-maximum increases observed in Cen X-4 (Evans, Belian, and Conner

1970), 3U1543-47 (Matilsky et al,, 1972), and A0535+26 (Pounds, 1976a)

Shorter intervals, however, could be fit fairly well, and the dashed ,lines

represent best exponential fits to the pre- and post-increase decline 	 1

phases, with e-folding times of 2849+1d8 and 2142+102 (99^Z, confidence

1_imits), respectively	 The acceptable values of X 2 resulting from these

fits reflect the smoothness of this phase of the decay on-timescales_

from 100 minutes	 l week. Although this is consistent with other X-ray

observations on shorter timescales (Doxsey et al. 1976; Elvis et a1. 1975),

variations in the optical counterpart of 	 0.5 magnitudes over ti hours -

1 day during this period have been reported by Matsuoka et al. ;(1976).

I	 The solid line in Figure 4.4 is the best 1/t fit to the early September

7	 data commencing at maximum ;light, which is drawn in for comparison with
f
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the similar decay expected in a "colliding shells" model (Brecher and

Morrison 1975) of the transient sources. Note, however, that the relatively

high ASM low-energy threshold	 3 keV), combined with the progressive

softening of the source spectrum (Pounds 1976a), may cause the flux observed

by the ASM to decline more rapidly than that which would be measured

by a photometer with lower threshold energy.

Figure 405 illustrates the ASM data over the final decay phase of

A0620-00 from 1975 December until its disappearance below the experimental

threshold in late March 1976. All of the points here are -. 112 day averages,

and the dashed line is an extrapolation of the post-October exponential

fit in Figure 4.4. Although the exponential decline is approximately

followed through 1976 mid-January, significant fluctuations on a timescale

of ^ 1/2 day are now evident, with the source disappearing below the

ASM threshold on several occasions. Similar variations on a timescale

of hours-days in the 1.3 - 5 keV flux during the same period have been

reported from SAS-3 (Matilsky and Zubrod 1976). A final dramatic increase

in flux before disappearance of A0620-00 occurred in early February, repre-

senting at least an order-of-magnitude deviation above the level expected

from extrapolation of the exponential decline. The subsequent decay

is correspondingly more rapid than in the earlier phases (e-folding time

10 d ), reminiscent of the decay light curves of Cen X-4 (Evans, Belian, and

Conner 1970) and 301543-47 (Li, Sprott, and Clark 1976).

b. Periodicity

Based on SAS-3 observations of A0620-00 during the period 1976

January 7 - February 8;(1975 day 372-404) Matilsky (1976) has reported

anti 50% sinusoidal modulation of the 1.3 - 5 keV flux. Chevalier, Ilovaisky,

and Mauder (1976) and Tsunemi, Matsuoka, and Takagishi (1977) have likewise
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reported evidence for a similar modulation Of the optical counterpart

at periods consistent with the 8A3-3 Value, while DuerbeCk and Walter

/ 1976 \ have suggested O modulation at roughly one half this period
'	 d	 '/P= 3 " 9 \ from B magnitude observations made over the early dSCliD8"

Since the magnitude of d periodic modulation of the 3-6 k2V flux may be

correlated with the sVUrC8 intensity, we have analyzed the single-orbit

and 1/2-day data in Figures 4~4 and 4.6 separately. In the first case,

the best-fit exponentials from the September and October-November data

were subtracted out separately, and the residuals folded over trial periods

in the range 0.2 - 10 days in intervals fine enough that a regular variation

should be revealed by a well-defined peak in the X distribution. Neither

this procedure, nor a fast fourier transform performed on the single orbit

data, succeeded in the detection of any modulation in excess of ry 3%.

This is equivalent to an upper limit of 2.3% fractional sinusoidal ampli-

tude on any 3-6 keV modulation in the range searched during this phase

of the decay. The 1/2-day data were tested for periodicity in a similar

manner, Although the average value of ^ is higher due to random fluctu-

ations (see Figure 4.5, -1975 day 350) and the limited number of cycles

at the upper end of the period range, no clear maximum in thevicinity

of 7.8 is evident. A small enhancement in the x distribution is present

at P = 8 days, and we estimate an upper limit of -10% to any sinusoidal

variation in the range 7.8 + 0.7.

The ASM upper limits to periodic modulation for the early light curve

, are of the same order as results obtained by the Ariel 5 SSI (Elvis et

al. 1975) and SAS-3 experiments (Doxsey et	 1976) at higher frequencies,

with reported upper limits on periodicity of 3% (200s - 2d, 2-18 keV)

and %2% (0.2 ms	 435s, 1	 10 keV), respectively, during the rise and
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early decline phases.	 The absence of a detectable 3 - 6 keV modulation

j
at the suggested	 - 7d8 X-ray or	 A .9 d optical periods during this stage

may be indicative of an extended emission region and /or a high orbital

inclination, and agrees with B magnitude measurements of Matsuoka et al.
a

(1976) over the same interval who found an upper limit of 0.05 magnitudes

on any periodicities in the 2 - 64 day range. 	 With respect to the later 1 s

decline we note that the SAS-3 period is based on observations during'

I
an interval in which the ASM source coverage is only N 30% and does not

include the February increase (see Figure 4.5). 	 The absence of a clear

7S modulation in our data may be reconciled with the b 5O% sinusoidal j

modulation (103 - 5 keV) reported by Matilsky (1976) if the effect is

more conspicuous below the ASM low energy threshold, or if it was present

at that level only during the time that the ASM coverage was incomplete.

c.	 Comparison with Optical Observations

Since the identification of V616 Monocerotis as the optical

counterpart of A0620-00 (Boley et al, 1976), several observers have monitored 	 .

the source in the optical 	 band.	 Of considerable interest are observations

made in the vicinity of the 3-6 keV increases during October 1975 and

February 1976.	 B magnitude measurements of Matsuoka et al_-(1976) during y

September-October clearly show an increase i n the optical emission of 	 ti

0.6 magnitudes concurrent (to an accuracy of 	 = 1 week due to a gap in

ASM coverage, see Figure 4.4) with the October X-ray increase.	 Their a

data also show a'roughly exponential	 decay (e-folding time = 1 month)'

in B magnitude during September in good agreement with the 3-6 keV X-ray
9

observations, but somewhat more rapid than the 	 -60 day decay time observed

in'UBV by Duerbeck and Walter (1976) over the same time span.	 The February

increase is again apparently reflected in the optical ;data, `with an increase

'.^ i
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of u 50% between 19 January - 16 March implied by the visual magnitude

9
estimates of Bortle (1976a,b). A final rapid optical decline commenced

at about the time of this last observation, the source brightness decreasing

approximately one magnitude by 31 March (Bottle 1976c), and another ti

2 magnitudes during April (Martynov 1976). Since the corresponding X-ray

decrease commenced on ,,,March 1 with an order-of-magnitude drop in flux
6

by March 16, the apparent correlation between the X-ray and optical features

of the decline suggests a time lag of % 2 weeks during this stage of the

decay. The discrepancy between the mean decay time constants over the

initial decline (August	 January) of the optical (To = 2 1/2 months)

and 3-6 keV (T x	 1 month) fluxes should also be noted. As the measured

effective temperature is just below the 3-6 keV band of the ASM (Doxsey

et al. 1976), the observed spectral softening during the decay would tend

to make the ASM-measured and optically determined decay time constants

underestimates and overestimates, respectively, of the true luminosity

decay time. This disagreement can not arise entirely from the high threshold

of the ASM, however, as SAS-3 measured a flux (1.3 - 5 keV) of S = 0.2

'	 Scrab 
on January 7 (Matilsky 1976) in good agreement with the ASM data.

Both the slower 'decay rate and the possible "lag" of the optical emission

with respect to the final rapid disappearance at X-ray energies are appar-

ently consistent with a mechanism in which X-ray and UV heating contribute

significantly to the production of the optical emission.

Combination of the X-ray or optical decay time constant with the

X-ray flux at maximum light allows estimates of the total energy and

corresponding mass exchange responsible for the primary source outburst

f

y
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(i,,eo, excluding secondary increases) 5 . These two limiting timescales

and S,n.^x = 1.7 x 10 -6 erg cm- 
2s-1 

(1-10 keV, Doxsey et al. 1976) yield

44 2
total energy o utput of E_1-10_keV - 5 14 x 0 	 d erg d= d 1 K	 o

I!	 ,
^	 a to	 gy	 p	 (	 )	 1	 1	 9( 1	 c/ 	 p

Assumption of a mass-to-radiation conversion efficiency of ti 10% implies

a corresponding mass exchange of 3 x 10 9 d2 Mo ti AM ' 9 x 10-9 d2 Me.

4.	 Norma "Transient"

An X-ray flare in the Norma region was detected by the ASM in 1975

j	 October, occurring within 5 0 of the bright UHURU source 301636-53

(Kaluzienski et al ..1975c )o Octant mode observations permitted deter-

mination of an approximate source position of P, 	 3300.7, b

(R.A. = 16 h 09n', Dec • -52,6 [1950]), with an estimated error radius (90%

confidence) of 2°. Due to its proximity to 3U1636-53 (which has exhibited 	
s

a moderate degree of variability, in contrast to its constancy in the Third 	 J

UHURU (3U) catalog, Giacconi et al. 1974), the only definitive measurements

of this source were obtained in the octant, mode. However, assumption

of a maximum flux for 301636-53 at its UHURU value (S 	 0p4 cm-2 s-
1
 octant

mode observations frequently yield S ti 0,3 cm-2s 1 ) indicates that the

Norma transient attained maximum light during the period 1975day 303

313 (October 30 -November 9) with a peak flux in the range 0.4 ^, S
max

(cm-2 s -1 ) ti 1.0. The ASM data for both sources is shown in Figure 4.60

Octant mode observations conducted approximatel y 11 months prior and

f	 2 1/2 months after apparent maximum yielded upper lim i ts of 0.1 cm zs_1

to the flux and the source has not been detected in 'subsequent octant

mode observations of this region. While this flare may thus represent

:5

The binary accretion process is assumed as the mechanism underlying
the X-ray outbgit in this calculation. Note that 1 Me) ; Solar
mass = 1 .99 x 10	 gm.

i

F	
^,
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a relatively short-lived transient X-ray source, it is interesting to

note that its position is consistent with that of the so-called "Norma 	
1

X-ray Burster" (Grindlay and Gursky 1976; Belian, Conner, and Evans 1976),

the highly variable ( ti 20X) UHURU-source 4U1608-52 (Matilsky, Gursky, and

Tananbaum 1973; Tananbaum et al. 1976), and the relatively hard-spectral 	 ^?

(kT = 30 keV) OSO-7 source MX1608-52 (Li 1976). If these sources correspond

to the same object (as appears likely from the positional coincidence),
d

the transient-like behavior observed by the ASM suggests a strong connection

i
between the transient and "variable X-ray sources. In view of its closer

resemblance to the latter class of objects, the Norma "transient"is not

I .	included within the transient source classification in the following
1

discussion.

5.	 A1118-61 and A1742-28

A1118-61 and A1742-28 represent two additional transients detected

in the first year of Ariel 5 operation for which X-ray light curves have

been constructed, but which were unobservable by the ASM	 At maximum

light on 1974 December 26 (S	 OnlOcm 2 s- 1 , 3-9 keV; Eyles_et al 1975a),

A1118-61 was still below the ASM all-sky mode flux threshold. In any

event, its proximity to the bright, variable 'source 'Cen X-3 would have

made unambiguous flux measurements at levels S ti 0.5 cm - 2s -1 possible

only during an extended low state of the latter source. A relatively

hard spectrum (n	 -1) and pulse period ,(P = 6.75 min) have been reported

(Eyles et al 1975a Ives, Sanford, and Bell-Burnell 1975), similar to

those later observed in A0535+260 Characteristics of the light curve

include a well-defined precursor peak, e-folding decay time of ti 1 week,

and possible low-level recovery phenomena up to 1 month after ,primary
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maximum (cf. Eyles et al. 1975a and Figure 4.7). While a possible optical

identification with the Mira variable RS Cen has been suggested (Fabian,

Pringle, and Webbink 1975), additional expected X-ray outbursts at the

164051 period of that system have not been detected (Davison and Sanford

1976), nor has the source been observed in previous or subsequent obser-

vations of the Centaurus region of which we are aware. Interestingly,	 f

in view of the similarities of its -X-ray properties to those of A0535+26,

A1118-61	 has also been tentatively identified with a highly reddened,
7

ti 12th magnitude B emission star (Chevalier and Ilovaisky 1975).
1

A1742-28, though a fairly bright source at maximum (S	 = 3.5 cm 2s -1,
max

3-8 keV; cf. ;Eyles et al. 1975b and Figure 4.8), is situated in the extremely

crowded region of Galactic Center and therefore virtually indistinguishable

by the ASM from large variations in those sources 6 .	 A1742-28 was charact-

erized by a relatively soft spectrum (n =	 -3) and an apparent three-component

decay similar to that of 3U1543-47 (Branduardi et al. 1976).	 It thus
_—	 a

appears to more closely resemble A1524-62 and A0620-00 as opposed to

the hard, pulsing transients.	 Furthermore, this object is probably among
e

the most luminous X-ray sources in the galaxy, as low energy absorption 	 +'

implies a neutral	 hydrogen column density of n H = 1-023 atom cm
-2 , 

consistent

with -a source near the galactic nucleus radiating at a rate of L
x,max

3 x 1038 erg sa l a 3

6.	 Additional Transient Sources and Candidates

As evident from Table 1.3, there remain an additional	 four sources

6 W note that an emission excess was evident in this region when exposed

to the ASM field of view in the time intervals immediately adjacent to
the cited observation.

r

s 4
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(Al246-58, A1745-36, A1743-29, and MX1803-24) which, although detailed

light curves were not obtained, clearly exhibited the sudden appearance

and initial decay characteristic of the transient sources (and were not

observed in previous surveys). Therefore, while a definitive classification

cannot be made, these sources are included within the class of transient'

sources in the following discussion. Finally, a number of transient 	 t

source "candidates", i.e. sources which may belong to this class but

for which an insufficient amount of data exists (e.g., A0025+59, Skinner

1975; MX0656-07, Clark 1975), have been reported during 1975-76 (see

Table 4.1)a

7.	 Null Transient Source Observations

Of equal importance to the above observations are the "null" results
3

for transient sources during the two years of Ariel 5 monitoring of the 	 j

sky. In particular, estimates of the ASM threshold to sources of the

type discussed above are necessary for the determination of the occurrence

rate and spatial and luminosity-lifetime distribution of the transients

addressed in Chapter V. The sensitivity of the,ASM -to'transients is

a strong function of their galactic location, with an estimated source
t

threshold(T d
 

n' 2 weeks) for lb II I 1100 (limited primarily by the quantum

counting statistics and fluctuations in background) of S
thresh 

ti 0.2
..	 '

cm 2 s -l . While this limit is also attainable in uncrowded regions of

the plane (e.g. Galactic Anticenter), it increases 'to- 0.5 - 1.0 cm-25-1

in the vicinity ` (oe ti 5o ) of strong sources (e.g., Centaurus, Norma, and

Cygnus complexes). The efficiency is clearly a minimum in the region

of Galactic Center, where the detection threshold may approach S 	 ti
thresh

2'Scrab (
r.3 cm s -l ). The corresponding octant mode sensitivity is about

a factor of two greater, but its infrequent use and limited sky coverage

{
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3

lessens the probability of detecting new sources in that mode. The combined
	

j

fields-of-view of the Ariel 5 instruments (st to ^	 3,95ff Sterad) insures

that few, if any, transient events will be missed as a result of incomplete

sky coverage.	 Furthermore, the small 	 blind ,spot centered on the spacecraft

south pole is not fixed in space for periods exceedingu 2 weeks. 	 The $
.

ASM/Ariel 5 observations of the transient X-ray sources may thus be sum-
a

marized as follows (see also Table 1.3):

(1)	 No sources	 (T- > 2 weeks) were observed at 'latitudes 	 I b LLI	 >
d 3

8°, at a source threshold of S	
21
 0.2 cm-2 s

-1	
The scarcity of bright

thresh
y^

sources in this region suggests that few (ti 2) transients went undetected

as a result of source confusion; and

(2)	 A total	 of nine unqualified transients	 (including one from SAS-3) -

were detected within 80 , of the plane, with peak (3-6 keV) fluxes in the

range 0.1	 - 50 cm-2s^ 1 .	 Although difficult to estimate, an upper limit

of ti 10 sources yr 1	 to the rate at which transient sources (S	
> 

0.5
ax

cm 2 s
-1 , 

T d > 2 weeks) may have been missed due to confusion with bright

sources in the disk (including Galactic Center)	 appears conservative.

This is roughly consistent with the extended galactic plane surveys conducted fi

by the,SSI on several different occasions which failed to detect any ?

additional transient sources, with a flux threshold considerably below

(SSI)	 = 0.001	 - 0.01	 cm-2 -1that of the ASM (S	 )Q'
thresh

As discussed in Chapter V, these "null" measurements are important in

determining the spatial, luminosity, and frequency distributions of the

transient X-ray sources.

3

7

t

.	 t
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u. variaoie Sources

_1.	 Aquila X-1

ao History

Aql X-1 (301908+00) exhibits the most extreme long-term variability
r	 ^

of the quasi-stable sources, with an observed luminosity range of

L	 /L	 ti 500. This volatility was evident from early rocket surveys
max min

of the region in which Aql X- 1 was detected only on an occasional basis

_(cf. Seward 1970). A moderate degree of variability was also observed

by UHURU, as reflected in the 3U Catalog record (S 	 0.1	 0.3 cm-2s-1,

Giacconi et ale 1974). Markert (1974) has reported OSO-7 observations

over three intervals during 1971-73 which suggest the existence of well-3

defined "high" (S ti 0.F cm-2 s -1 ) and "low"',(S ti 0.01 cm -2s -1 ) intensity	 3

states. Aql X-1 was subsequently observed by OAO Copernicus at levels 	 '.

at least an order of magnitude below the UHURU range in intermittent obser-

vations over a two-year period through 1975 May (Davidsen et al. 1975).

This apparent quiescent state was interrupted in 1975 June by a sudden

flare (factor of	 20 increase, Buff 1975) to the level of the Crab nebula,

h	 followed by a gradual (Td \, 1 month) decay back to the pre-flare state.	 1

The succeeding 'Flow" state was again punctuated in 1976 June by a similar

outburst (Kaluzienski et al. 1976b; Watson 1976b; Kaluzienski et al. 1977b).

b. ASM Observations

The proximity of Aql X-1 (R,L
I
 = 35.70 , b IL	 4.0 0 ) to the

sources Ser X-1 (301837+04) and 301901+03 
(Smax_= 

0.4 and 0.1 cm-2s-1,

respectively) make unambiguous detection of a low Aql X-1 flux (' 0.2

cm-2 s- 1 ) problematic in the all-sky resolution mode. Consequently, occas-

ional fluctuations in detector background and other systematic effects

could conceivably result in "accidental" flux measurements (with low

f
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probability) as high as -0.3 
cm-2s-1	

for this particular source.	 The

data obtained during the 1975 and 1976 flares of Aql 	 X-1	 are illustrated

in Figures 4.9 and 4.10, and represent the only unambiguous detections

of the source over the %25 months of ASM operation during which the duty

cycle for daily monitoring of the Aquila-Serpens region was	 > 75/.	 These

l
plots consist of 1/2-day accumulations with corresponding + la 	 statistical

error bars (estimated la	 systematic errors are smaller than the statistical

uncertainties).	 The upper limits obtained (0.1 	 cm-2s -1 )	 immediately prior

to the 1975 flare are consistent with the SAS-3 observations 	 (Buff 1975),
a

and no positive detections of the source above - 0.2 cm-2s 
1 
were made

during the preceding ,7 1/2 months.	 A similar search of the ASM data

over the _period between the flares yielded no unambiguous source sightings

through 1976_April, with a possible detection at ti 0.3 cm -2 s
-1	

(for ti 1

day) two weeks prior to the 1976 outburst.	 We note finally that the appar-

ently differing peak flux levels of the flares areactually consistent

with a single limiting value	 (S	
`u S

crab )', as degradation in the effectivemax
3

3-6 keV detector efficiency of `u 10% between the two flare observations

can	 not be excluded	 (cf.§ III.D.1). t

c.	 Periodicity

As a 1.3-day modulation has been reported (Watson 1976a) from

the 1975 SSI flare data (obtained during the time interval	 in Figure 4.9

labelled "equator"), we have investigated both the 1975 and 1976 ASM

data for periods in the range 0.3 - 3 days.	 The standard technique,

i.e., folding the data (the1975 and 1976 data were analyzed separately)

over the range of trial	 periods and noting deviations ,in the X2-period

-xt
distribution to the hypothesis of source constancy, was employed.	 The

most"prominent peak in the 1975 ASM data, is indeed, consistent with

s
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the SSI result.	 As the two experiments have mutually exclusive fields-

I	 of-view,	 the ASM result at 'a level of 3% + 1% is an independent measure
i

of the same effect, but cannot be claimed to be an independent detection

owing to its marginal	 statistical significance.	 Assuming its reality, r

we can refine the period estimation to 1.28 + 0.02 days. 	 No such modulation

-is evident at this period in the 1976 data, however, with statistical

errors comparable to those in 1975;

A summary of the totality of the 1971-76 data for Aql X-1 	 is displayed

in Figure 4.11, from which there is a-clear indication that the OSO-7

data are consistent with flaring episodes similar to those in 1975-76.

As there is no exact period which can be fit to the four flares for which

i

there is observational	 evidence, we have derived a mean flare interval

of 435 days with an rms scatter of % 10%, and have indicated a possible

history of identical	 flares which satisfy all	 of the observations7.

The implications of the irregularity of the proposed flare cycle for models

of the transient sources is discussed in the following Chapter.

2.	 3U1630-47 (Norma XR-1)

'	 Another source which apparently undergoes repeated outbursts similar t

to those of Aql	 X-1	 is 3U1630-47.	 Jones et al.	 (1976) have reported-a

flare cycle for 3U1630-47 of P = 615+5 days based on an analysis of UHURU

and Arel	 5 data	 (see Figure 4.12).	 This source is located in the relatively

crowded Norma region and its angular separation from the bright, variable

7An additional	 transient-like outburst from Aql	 X-1 was observed in

1977 January (Watson; 1977),	 characterized by a peak flux of roughly'

one-third that of the 1975 and 1976 flares 	
(Smax	

0.4 cm'	 s
-1 , 

Holt
r	and	 Kaluzienski	 1977).

^q.
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	UHURU source 3U1'42-45 (oes -.3
0 
 is at the octant mode spatial resolution 	 j

limit. Several octant mode observations near the time of the last reported

flare are available, however, and an effort was made to measure the

source intensity at those times. The resultant points are consistent

with the resul ts of Jones et al (1976) and are plotted in Figure 4.13.

3U1630-47 has not been observed at levels exceeding nu 0.2 cm-2 s -1 in

prior or subsequent octant mode observations of the Norma region.

3.	 Cyg X-1

Yet another type of long-term variability which is reminiscent of

both the transient sources and the extended "high" and "low" intensity

states exhibited by Cen X-3 is evident in the ASM observations of Cyg X-1

(see Figure 3.9).	 A sharp (factor of-.4)	 increase commencing on 1975

April	 23 (day 113)	 is shown in Figure 4:14,	 As shown 'there, no visible

decay from this highly variable emission state was observed for at least -

ten days after onset, at which time the source left the ASM field of

view (at the spacecraft pole). 	 Subsequent observations_ by the collimated

proportional	 counter experiment on Ariel 	 5 reveal	 a gradual, decline back

--r	 to the pre-"transition" intensity by 1975 May 14 (day 134),- implying

a

i

a decay time T
d
 ti 8 days.

A smaller increase was reported in 1975 September (Frimini	 1975),

which displayed the same temporal variability and a decay time of ', 1 4

week.	 In 1975 November a third increase was observed (Kaluzienski et

al. 1975d,	 Grindlay and Schreier 1975), with a peak flux at -the -level

of the `April `event and characterized by similar variability. 	 As demon-

strated in Figure 4.15, however, this "high" state was maintained for

nu 3 1/2 months, terminating relatively abruptly	
(_c

d < i	 week)	 in ` 1976` Al

mid-February.
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Spectral information on the April flare indicates a steepening of

the spectrum in the "high" state (power-law photon index n	 -4) relative

to that characterizing the low state (n 	 -2). While spectral data

on the November transition has not been reported, the type of spectral

variation observed in the April event was also associated with a'transition

occuring in 1971 April (Tananbaum et al. 1972).

4.	 Circinus X-1	 3

a. ASM Observations

Cir X-1 (301516-56) exhibits a high degree of variability (factor

of r', 20) on timescales ranging from seconds to years. Eclipse-like

behavior has been reported by several observers (Tuohy and Davison 1973;'

Jones et al. 1974), but no _period consistent with all observations had

been found, with difficulties resulting from the long-term variability

of the source (e.g., "extended lows" similar to those of Cen X-3) and

the relatively short observing time possible with most instruments prior

to Ariel 5.

From the launch of Ariel 5 through 1975 August, Circinus X-1

was not unambiguously detected above the all-sky mode threshold (% 0.1

-2 1
CM 

s 	
in this region), and observations conducted by other experiments

on Ariel 5 in 1974 November and again in 1975 March, failed to detect

the source above a level of ti 0.01 cm-2 s	 in the 1,2-'9.8 keV range

(Kaluzienski et al. 1975b). In 1975 October Cir X-1 exhibited a significant

increase (ti factor of 10) in the 3-6 keV flux, signaling the commencement

of a new phase of heightened activity (cf. Kaluzienski et al. 1976c).

The source subsequently fluctuated between approximately r'b 0.05 and

1.5 cni s l through 1976 February, after which the peak intensity gradually

declined to ti 0.1 cm 2 s_ 1 by 1976 late April. It is evident from Figures

s L^

.	 a
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4.16 and 4.17 that the bulk of the emission is confined to relatively

brief, flarelike episodes occurring at fairly regular intervals. Order

of-magnitude variations over time scales ti 1 day are not uncommon, and

the light-curve bears little resemblance to that of any known occulting

X-ray binary.

b. Periodicity

Periodic modulation of the flux was searched for by folding

the data in Figure 4.16 over trial periods between ti 14 and 20 days,

the range 'elow 1443 having been effectively ruled out by UHURU (Jones

et al. 1974) and OSO-7 (Canizares, Li, and Clark 1974) observations.

A significant peak in the X2 versus period distribution occurred near

16.55, with a corresponding light curve characterized by a relatively

short interval ( %< 5 days) of high-level emission followed; by an abrupt 	 ?

falloff to minimal flux. To improve the precision of our determination

of the period, transition epoch, and duration of a possible occultation,

the single-orbit data were inspected and revealed six clear instances

in which the Cir X-1' count rate dropped from relatively high to low

levels in adjacent orbits. Two such transitions are illustrated in Figure

4.18, where the sharpness of the decrease in flux is apparent, occurring`

over a time scale of ti one orbit ( =_Od07). Taking the end -time of the

last ON orbit for the time of transition and an accuracy of + one orbit, -

a least-squares fit to a constant period yielded P = 16.585 + Oa01 and

transition epoch JD 2,442,877.181 + 0.07 (8) , where the quoted errors

are	 3/2 the square root of the respective fit variances. Since the

effective ASM single-orbit (coarse-mode) sensitivity is ti 0.3 cm-2s-1

i
	

8JD' Julian date; JD 2,442,327.5 = 1974 day 280.0.

s	
_



l	

r

62

i

in a region as confused as Circinus, the points following the transition

in Figure 4.18 are not definitive. A fine-mode observation of a transition

on 1976 April 8 showed a possible detection (2a) at = 0.05 cm-2s 1 as a

early as four orbits (0d33) later, but was followed by another six orbits

(Od42) in which no detectable signal at this level was observed.

Figure 4.19 shows the data of Figure 4.16 folded modulo 16.585,

with phase 0.0 centered on the epoch of rapid transition from high to

low intensity. The asymmetric nature of the emission over the cycle

is again quite evident, with the bulk of the source activity occurring

at phase > 0.75. No sharp emergence from an eclipse is apparent, in

contrast to the UHURU observation of 1972 May 9-17 (Jones et al. 1974)

and to the behavior of the occulting X-ray binaries Cen X-3, Her X-1,

and Vela X-l (9) 4 Note that the scatter of points at phase > 0.75 in

Figure 4.19 is due primarily to the folding of cycles of differing peak

intensity, and not to variations within each cycle (see Figure 4.16)

With regard to the long -term behavior of Cir X-1, Clark, Parkinson,

and Caswell (1975) have proposed a young runaway binary model in which

the ON state occurs near periastron of a highly elliptical, long- period

`	 orbit. Davison andTuohy (1975) found that an intervalof ti 220 days,

between times of high emission was consistent with the available X-ray

data. This is difficult to reconcile with the observations reported

here since the absence of emission at more than 10 percent of maximum

between 1974 October and 1975 August implies an extended low state (at

9Forman (1977) has recently; reported that a re-analysis of the 1971-72
UHURU data for Cir X-1 has yielded an eclipse-like light curve at a

period of 16.605 with an eclipse duration of ti 1425`.

r

t
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energies < 6 keV) of ti 300 days, In addition, the relatively regular

"envelope" of the long-term emission evident in Figure 4.16 is not present

in the later data, with a clearly irregular modulation of maxima in the

1646 cycle apparent after about 1974 day 830 (1976 April 9; see Figure

4.17). It thus appears that while the long-term variability of Cir X-1

at relatively low X-ray energies can sometimes be characterized by fairly

well defined "high" and "low" states, no regular long-term pattern may

f

,

r

exist. Finally, note the ,transient-like decay (Td ti 1 month) of the

successive l d6 maxima which commenced between 1976 January 30 - February

19 (1974 day 760 - 780)0

5.	 Cygnus X-3

As discussed earlier, the 4h8 periodicity of Cyg X-3 affords an

excellent test of the experiment sensitivity. The long-term light curve

of this source is also interesting, as shown in figure 4.20. In particular,
i

a source modulation at the period P	 17 d emerged from folding of this

data (cf. Holt et al. 1976d), In addition to significant fluctuations

on timescales of days-weeks, a clear over-all declining trend is evident,

with a roughly five-fold decrease in flux occurring over a period of u 1

year. As changing gain and spacecraft orientation during this time -

could conceivably result in systematic errors as large as ti 20%, a gradual,

long-term decay of the source emission (3-6 keV) is clearly indicated.

Whether this variation represents a decrease in the total X-ray luminosity

or reflects a gradual spectral variation of the source (cf.,, Serlemitsos

et al. 1975) cannot be determined from our data. Subsequent observations_

have shown Cyg X-3 at levels ti 0.2 cm 2 s
-1 

except for occasional, short-

2	
}

lived, enhanced intervals where the flux may reach a level of ti 0.4 cm-s-



4

64

6.	 Sco X-1 and Cyg X-2

We conclude this Chapter with a short discussion of two sources

which have exhibited little, if any, l ong-term variations during the

ti 2 years of Ariel 5 operation. Sco X-1 and Cyg X-2 have been likened

r	 ^

in several respects, including their X--ray variability (factor of ti 3

J^
on timescales of hours-days, Giacconi et al. 1974) and identification

with short period (Po et	0,787 and 0.92 for Sco X-1 and Cyg X-2, respect-
i

ively) binaries with late-type, low-mass optical companions

4

The ASM light curves of these sources are shown in Figure 3.9.	 '-

While dramatic long-term variations are not apparent in the records of

these s-ources, both have been shown to exhibit distinctive variations

on shorter timescales. Holt et al. (1976c) have shown that the observed

fluctuations of Sco X-1 are consistent with shot-noise dominated emission,

characterized by flares (duration 	 .3d) occurring at a rate of ti 200 d-1.

Cyg X-2, on the other hand, has been found to vary quasi-regularly by 	 -

a factor of r-5  with a cycle of 1102 (Holt et al. 1976e). Interestingly,

neither of these sources exhibits an observable modulation of the 3-6

keV flux at the proposed optical periods (Holt et al 1976b,e).

It is clear from the ASM observations that the vast majority of

galactic X-ray sources exhibit some degree of variability over time

scales of hours years. A number of UHURU sources listed as "non-variable"

have been observed to 'fluctuate (e.g., 3U1636-53) while others of low

(quoted) variability have exhibited major outbursts (e.g., Aql X-1, 401608-

52). In addition, several sources observed at relatively high flux

levels during the UHURU era have shown marked reductions in intensity

s

r
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from recent observations (S (1975 -76) ti 0.05 - 0„01 SVilla etUHURU	 ---
aall. 1976)0 It would thus appear that all binary X-ray sources are variable

at some sensitivity level over a wide range of time scales, with the

transient sources representing the most extreme manifestation of the

intrinsically chaotic accretion process,

1

1	 ^
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CHAPTER	 V i,

DISCUSSION AND CONCLUSIONS

We now turn to the di;.cission of the nature of the transient X-ray, z
:

sources.	 Inasmuch as the extreme variations of these sources observationally

distinguishes them from the majority of variable X-ray sources, it is

I
desirable to examine whether they may represent a new type of astrophysical

'

phenomenon (as suggested, for example, in some models for the Y-ray bursts),

or may be explained in terms of more conventional mechanisms.	 In the

latter case, we must distinguish between a number of a priori	 possibilities,

including sources characterized by similar variability in the optical

band (novae and supernovae) and extreme variations in relatively stable

X-ray emitting systems (X-ray binaries). 	 The observations of Chapter

IV may be utilized in two fashions to attack this problem. 	 First, the

results of	 § IV.A.7 may be employed to constrain the various parameters

(spatial distribution, rate of occurrence, and peak luminosity)
i

of the over-all	 transient source population.	 Secondly, the implications -

of the individual temporal 	 and spectral	 characteristics of each source

may be combined with the preceding information and investigated i n the

context of specific source mechanisms. 	 We shall demonstrate that both

classes of observational constraints are consistent with a source inter-

pretation in terms of the standard X-ray, binary model, with outbursts t

caused by large variations­i n the mass transfer rate to the compact object

w resulting from temporary increases in the stellar wind density or episodic

I Roche-lobe overflow of the companion. 	 Note, however, that no'a priori

assumptions are made as to the spatial and luminosity distributions of

r

the transient sources.

I	 ^
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As noted in Chapter I, the pre-Ariel	 5 transients	 (Table 1.2) are
l?

characteristically bright (S
max	

Scrab)' long-lived (Tavg ,'L 1 month)
G	 1

sources appearing (except for Cen X-4) within 5
0
 of the galactic plane.

The relative insensitivity of the earlier instruments to transient events a

resulting from incomplete and non-uniform sky coverage make those obser-

vations of limited value for quantitative estimates of the aforementioned

transient source parameters.	 Indeed,:the detection of at least nine
-4

additional	 transients (with peak fluxes ranging from ti 0.1	 - 40 S	 )
crab

during the first 2 years of Ariel 5 operation suggests that the -predominance,]

of bright, long-duration transients in the earlierdata may be reasonably,
;.

r

attributed to observational 	 selection effects.	 In the following discussion,

the virtually continuous all -sky coverage (ti 80% of the 3-6 keV X-ray

sky at a level	 ti l/3 Crab) of the ASM is combined with that of the other

(limited field-of-view, higher sensitivity) Ar'iel	 5 experiments, with

an expected considerable reduction in such effects.

A.	 Spatial	 Distribution

While a galactic origin for the transi4nt sources was demonstrated
P

by Silk (1973) on the basis of the pre-Ariel 	 5 sources	 (cf. Appendix E), k
their apparent concentration at ,low galactic latitude may plausibly be

ascribed to observational	 bias in the plane.	 Citing this possibility,

Silk in fact concluded that the early observations favored a galactic

halo population.	 It is quite clear from Tables 1.3 and 4.1, and Figures

1.6 and 5.1	 (the latter representing a galactic map of "unqualified"
l ,transient sources, proposed candidates, transient/variable sources

i

This classification includes sources which exhibit relatively frequent,
transient-like outbursts	 (e.g.	 Aql-X-1	 and 3U1630-47).
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and long-term variable (ti 10x) UHURU sources), 	 however, that the transients

must constitute a disk population similar to that of the brighter UHURU
l

sources.	 An upper limit to the mean displacement from the galactic plane
i

_
zj)may be obtained on purely probabilistic grounds, 	 independent of

whether the transients represent a local 	 (low luminosity) phenomenon

or are located at galactic distances (i.e., id ti 1	 Kpc).	 Including only
fl
a

the sources observed over the two year period from 1974 October (Table i

1.3), we find a mean galactic latitude of	 30.1.	 The probability

of observing all nine sources within 70 of the plane from a spherically- f

distributed source population is P ti 10 - 8o
	

If we now assume the worst

possible case (for establishing an upper limit toIz^)of a galactic`distr-

butibn for`thP:transients, a mean distance from the sun of d ti 15 Kpc

is implied, and the observed latitude distribution 	 (excluding'Cen X-4,

which is probably much closer) yields the result 	 Iz	 0.78 Kpc.	 Note

that even for the anomalously high latitude source Cen X-4, 	 (b = 230),

the distance from the plane may be reconciled with the above half-thickness r

if L ti 10 38 erg s
-1	

(z ti 0.57 Kpc).	 The observed source galactic longitudes €

may also be employed to effectively; rule out a local origin (d ti 1 	 Kpc),

since the probability of detecting only two sources out of nine with

galactic longitude 900 ti R; ti 270 0 from a uniform angular distribution

} is P = 0.07 (P	 0.01	 if the pre-Ariel	 5 transients are included).

Another estimate of the scale height of the disk occupied by the

`t transient sources is obtainable from their direction in the galaxy (i.e.,

galactic longitude) and the observed fluxes at maximum. 	 Anticipating

the characteristic range of peak luminosities (L) of the transients derived ='

in the next section 	
36	 -1	 39, 2 x 10	 ti L	 (erg s	 ) ti 2 x 10	 , it is instructive ,r

y

to tabulate the distance to the sources as a function of L. 	 Table 5.1

y

k

I
y.x.,,w y x.c....,n:	 :	 ..	 , , 	 r-ea :	 .a*+	 .ar,.,...a	 :^'4-r `'	 ro	 s-.r^` 1



shows this dependence and includes the maximum distance to each source

69
	

1	
r

^f	
9

1
3

in the Milky Way (i.e., to the galactic edge), where we assume values

for the galactic radius (R) and sun-galactic center distance (PS ) of 15 #.

and 10 Kpc, respectively.	 On the basis of these sources, we find an average
,r
;;	 a

displacement from the galactic plane of 	 zJ	 = 0.3 x (L	 Kpc,Kpc,	 (L
38

;s	 ;

L/10 38 erg s -1 ), and it is apparent that the transients must reside in a

,J

'it relatively thin disk	 (0.002 ti	 JZ1/R_ti 0.06).	 While it is therefore possible

to exclude only a Halo Population II 	 (Jziti 2 Kpc, Allen 1963) origin for the

transient sources at this point; evidence for the existence of two distinct; it

spatial	 distributions is discussed in the following Section.

As can be seen from Figures 1.6 and 5.1, the spatial	 distribution

of the "unqualified" transients is entirely consistent with that of the

variable ("permanent") sources, even to the extent of an apparent concen-

}

tration near galactic center, which has been associated with a physical

concentration of sources in the nuclear bulge (320
0
 < R,<  20

0
, Salpeter

1973;'Gursky 1973).	 While we cannot rule out an enhancement in the 'space

-density of the transient sources in the inner nuclear region, an approxi-

mately uniform distribution throughout the remainder of the disk is clearly

implied by the appearance of two sources in the vicinity of Galactic
a

f

Anticenter.	 It is interesting to note in this regard that Matilsky et

rI.f al.	 (1973). 	 concluded that the UHURU data on low-latitude sources 	 (IbJ	 <

J 200) is consistent-^Lith at least two types of objects:yp	 (1) a small	 number

of intense sources in the central 	 galactic region with	 IzI ti 650 pc;

and (2) a larger number of less intense sources more uniformly dispersed

through the Galaxy with	 (zJ ti 200 pc.	 Although the statistics do not

allow exclusion of additional 	 systematic variations of the space density
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(for example, clumping in the spiral arms), such effects will not signif-

icantly affect the conclusions of the next section in which a roughly

uniform spatial distribution is assumed.

B. Occurrence Rates and Luminosities

A rough determination of the characteristic luminosit yy (at maximum)
u

E	 of the transient sources may be obtained based upon the above spatial

	

distribution and the observed fluxes 2 . As illustrated in Table 5.1, the 	 v

majority of sources: would lie beyond the boundary of the galaxy for L Z

2 x 10
39
 erg s- 1 , while most would be located within ti l Kpc of the

Sun for L ti 1036 erg s -1 (in contrast to the non-local origin suggested
r; a

	from the galactic longitude distribution). Given the consistency of the 	
3	

j

spatial characteristics of the transient sources with a roughly homogeneous

distribution in the galactic plane, we may define more precisely the

range of allowed luminosities' following the procedure of Silk (1973), 	 y.

As outlined in Appendix E, the assumption that the transients may occur

anywhere in the galactic plane (scale height h « R) with roughly equal

i probability and peak absolute luminosi ty (L), gives the relation:

	

N(>So' t)	 4r ( L2 ) (Tor	 (5-1a)
SoR

(ergs- 1 )	 4.3 x 1038 N(>S
o ,t)	 So	

R	
2	

(5-1b)

	

yr 	 t	 Ca b ) \1 5 Kpc

where N (>S0 ,t) is the number appearing above a threshold flux So i`n time

t, with a mean time T between all source occurrences in the galaxy,,(of

radius R)	 Note that this equali ty holds only under the conditions that:

2We assume throughout this discussion spherically symmetric X-ray emission,

i.e., S	 L 2	 Any beaming ornon-spherically symmetric emission over

47rd
a solid angle 2` will corresponding lower the deduced luminosities by a factor

r, "^ 	 _WJm	 aw.csx,,.....	 :.._ a. _ . Y _	

* a.31	 £. .^daC tz0^ _
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i
(a)	 no sources are misled (due to source confusion, for example) whose

fluxes exceed So, and (b) the characteristic luminosity is such that

S < So for d	 u R(3)o	 If either condition is violated the quanti ty

N(>SO ,t) will be under-estimated, and Equation (5-1b) can only give

i	 a lower limit to the ratio L /T.	 We also note that Equation 	 (5-1a)	 is
y

I^
just the "size distribution" for equi-luminous sources located uniformly 3.

in a thin disk N(>S,t) _ C
	 L 

2
S-1	

evaluated at flux level 	 So.
47r R	 /\T)

7
i

If the number of sources were sufficiently large, one could use the observed

size distribution to discriminate between a uniform and inhomoge`neous

spatial	 distribution (for example, N(>S,t)	 _ (	
L
2 )	 (T)	

S
-z 

for M

4Tr R

spiral	 arms, cf.	 Appendix E).	 However, as shown in the log N-log S plot

of Figure 5.2 and as discussed in Appendi x E, the pauci ty of transients

does not allow resolution of this problem at the present time, although

a spherical, distribution	 (extragalactic or galactic halo) is clearly ir-

reconcilable , with the observations. 3

We now relax the assumption of a single characteristic transient

source luminosity and investigate the possible existence of at least two

source sub-classes, distinguished primarily in terms of luminosity, and

to a lesser extent, other characteristics such as spectrum and lifetime.

Examination of Tables 1.2 and 1.3 suggest that the transients may be

divided into two main classes:	 (1)	 bright (Smax > Scrab)' soft spectral

(a `^ 01crab)' 
long-duration (Td r> 1 month) sources exemplified by A0620-00

3This condition implies that we are sensitivity-limited to the sources;

L	 2
i.e.,	 Ro <	 R, where Ro	

^4TrS)	
see Appendix E.

o

_	 _. 	 ^'	 IMP	
1 ^ 	 `	 „	

y

Ya
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j	 (henceforth designated Type I), and (2) weaker 
(S
	 <	

Scrab)' hardermax

spectral(a ^` °Gcrab) 	 short-lived (Td < 1 month) sources typified by
z

A1118-61	 ("Type II").	 It is also interesting to recall 	 that the two

Ariel 5 transients which presumably belong tb this latter category (A1118-

61 and A0535+26) have both been shown to be pulsating with relatively z	 r"	 ?

long periods	 (104s and 6.75m, respectively) and have been tentatively

associated (Chevalier and Ilovaisky 1975; Liller 1975) with massive early-

type giant companions	 (OB stars).	 While these sources must be characterized

by luminosities L ti 5 x 10 37	erg s- 1	and 1038 'erg s- 1 , respectively (in

order to insure confinement to the Galaxy). ,sources such as A0620-00 and

A1742-28 apparently represent a more luminous phenomenon (L > 10 38 erg

S	 in view of their observed brightness and 'probable distances 	 (d ti 1

and 5 Kpc, respectively).	 Given the evidence fora two-component transient

source population, a more rigorous determination of the corresponding

peak luminosities and rates of occurrence may now be attempted.

1.	 -High Luminosity Sources	 (Type I) a

It	 is clear from the log 'N-log S plot	 (Figure 5.2) that there

exists a predominance of bright sources with a corresponding deficiency

of sources at fluxes S < S crab: (with respect to the assumedplane distri-

bution, curve II).	 Although a fraction of this deficiency (especially

in the range 0.1 ti S/S	 ti 0-'5) may be ,attributed to sources missed
crab

as a result of confusion in the plane, the magnitude of the discrepancy

is such that some portion of it must arise from a physical	 absence of

sources in this flux range. 	 As the majority of sources with fluxes S >

Scrab are reconcilable with Type I transients, this conclusion implies
i

that the ASM is not sensitivity-limited to the bright, long-duration

sources, and Equation 5-lb therefore provides only a lower limit on the
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ratio L/T	 The detection of three sources of the Type I variety during

the first year of Ariel 5 operation (A1524-62, A1742-28, and A0620-00

all exceeded Scrab at maximum, compared to an effective experiment threshold

Sthresh - 1/3 Scrab)	 implies a value of	 T I lL 0.1 yr (i.e., f I- TI	 ti ;

10 yr, on the average), and a corresponding characteristic peak luminosity

L I	
1038 erg s-1(4).

As discussed above, the maximum allowable luminosity for these sources

is specified by the requirement of containment within the Galaxy. 	 The

potentially great distance (dmax ti 20 Kpc) and relative brightness of

A1742-28 make this source particularly useful in this regard, yielding'

L ti 2 x 1039 erg s -1	 In addition, the peak luminosity of A0620-00,

for which a good upper limit to the distance is known (d ti 3 Kpc, Wu et al.;

1976; Whelan et al. 1976), L	 9 x 1038 erg s- 1 , is consistent with the

above value.	 Furthermore, the rough agreement of this upper limit to

L I	with that derived from Equation 5-lb with T I	< 1 yr (L I ,ti	 1039 erg s-^)
i

suggests that we have not seriously underestimated N(>So,t) in that

Equation.	 It is interesting to note that the derived range of Type I

peak luminosities, 10 38 ti L I	 (erg s- 1 ) < 2 x 1039 , is consistent with

that expected from a class of ,Mx = 1 - 10 Me Eddington-limited sources

r	 j

M(LE _	 1.3 Me
	

x 1038 erg s l ).	 Note also that this argument is self-

consistent as virtually all	 sources of this type will 	 appear at intensities

above the`ASM level	 of detectability (i.e., even at dmax r' 20' Kpc, S ti

0.1 
Scrab)' 

and that the sensitivity-limitation condition 	 (b)	 above is

4 Note that we have chosen' S	 = S crab in this case to minimize the effects
violation of	 ^b)	 (of	 condition	 sensitivity-limitation) above.	 Note

also that a comparable lower limit (L 	 9 x 1037 erg s- 1 )	 is obtained if

we'include,MX 1803-24 as a Type I source (N (>S 	 = 4).
crab'

MEN 1^^09
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not satisifed (Rti'10 - 30 Kpc)u	 This latter situation is further
o

accentuated by the Sun-Galactic Center offset, as discussed in Appendix E.

Finally, as a consequence of their intrinsic brightness, proximity to

is
the plane, and longevity, earlier sources belonging to this class (Cen

X-2,_Cen X-4, and 3U1543-47) were detectable with relatively high efficiency 	 r

.	 ; elen without continuous- all-sky coverage.

2.	 "Low Luminosity Sources (Type II)

In contrast tr, the TypeI transients, the harder-spectral, shorter-

duration sources are consistent with a-source population that is intrinsi-

cally less luminous at maximum.	 The upper limits to the luminosities

of A1118-61 and A0535+26 (L ti 5 x 1037 erg s 1 and 10
38
 erg s -1 , respect-

ively)	 indicate that the ASM is indeed sensitivity-limited to this class

of transient sources.	 Note also that the short-lived UHURU transient

3U1735-28 is consistent with a source of luminosity L ti 5 x 1037 - 1038

' erg s	 residing in or near the Galactic Nucleus (d ti 7-10 Kpc). 	 In this

case, the relative brevity of the outburst only contributes to the problem	 -	

i

^ a suggestingof source detection 	 su	 estin	 that all	 such sources above an effective

G threshold of So = 1/3 
Scrub 

will	 not be observed, in general. 	 Thus, condition
L

(a) on Equation 5-lb 	 will not be satisfied, and this relation agai n

can only ;specify a crude lower limit for the ratio L /T:

l	 S

L	 /'T	 ( er	 s	 )	 ti	 2	 x 1038 (
	 o	

)	 (	
R	

)	 (5-	 c)

f
15 KpcII	 II	 Yr	 Scr-ab

F
where we have used N( >So	

S
crab' t = 2 yr) ti 1	 (A0535+26) since the

efficiency for detection is so poor at the level of A1118+61. 	 Although

thegalactic longitude distribution of the over-all 	 source sample isir-

reconcilable with a local	 origin	 (§v.A), we cannot rule out a priori

^aic+. LBV.'_.. _ ^^'^'W ..	 .	 .1.,	 . 3..s.^ ..Y	 ..u.a».	 ,2 ^	 r..--raw..	 , 	 .	 ....^....	
:a'e^f-;	 Tt^:#NpYI^.	 'm'r,". t"aa»^	 _	 Fn
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the possibility that the subclass of Type I_I transients represents an

intrinsically weak phenomenon with a correspondingly greater rate of

occurrence (i.e., L II < 1035
 erg s-1, TII < 10- 3 yr, Equation 5-1c).

Such an extreme situation can effectively be ruled out, however, in view

of the following considerations (we include the UHURU transient 3UI735-28

as a Type II source in this discussion): 	 {

(1) As for the over-all sample, a local spherical distribution

of these sources may be ru' I E.0 out on probabilistic grounds (Prob (N =

3, Ibl < 5 0 ) = 5 x 10, 3 ). The source horizon (5) (L < 1035 erg s-1,

S > 0.1 Scrab ) of rh	 0.7 Kpc and the observed latitude constraint

'Ib) < 50 ) then yield a maximum disk-half-thickness of I Z I < 100 pc_; in

(2) The condition T	 10 3- implies a total number of (Type II) sources

T
instantaneously 'ON' in the Galaxy of N = ON

	 0.10 yr	
(T` is the

i
y

 ON	
1

average source ON-time TON < 2 T d , T d ,< 3 weeks), or N i < 100. Such a

relatively large number of transients could contribute an unresolved source

component to the observed upper limit to a galactic ridge (Lns < 8 x 10-`30

erg s- 1 cm 3 ,
 III = 60°, (5-2); Holt et awl, 1974). Assuming the source

density in relation (5-2) to be composed entirely of Type II transient 	
r

N.	 t

sources in the ON state (n s =	 2 ) gives an independent upper limit
21r R h

on (L/T) of:

1

L /T'	 (ems--S---) < 4 x 10 38
'( R	 )2( h	 ) ( 

0.10 ,y r ) , (5-2a)
II II	 yr	 15 Kpc	 O.lKpc	 TON

The source horizon is the maximum observable distance for which sources

of luminosity L will appear above a threshold flux S 	 r =
thresh	 h

(L/41TS	 ) Za
thresh
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where we note that this relation is useful on'I.y if the number of instan-

taneous sources is sufficiently large	 (i.e., T	 10 3 yr);

(3)	 The assumption of a roughly uniform spatial distribution in

the galactic disk (N(>S)	 a	 S -1 ) and the detection of one source brighter

than the Crab over a two year interval implies a yearly rate of occurrence

at fluxes exceeding S = .01	
Scrab 

of N( >.O1	
Scrab' 

t = 1 yr) = 50, or

crab)	
4 month -l .	 The extended galactic plane observations

of the SSI are interesting in this regard (total observing time > 2 1/2

months), as that instrument (S 
thresh-	

°005 
Scrab) 

would be expected

to detect > 10 of these sources during that time.	 While a number of

weak, previously undetected sources have been discovered by the SSI during

such scans	 (Villa et al.	 1976), most of these sources cannot be associated

with the transients, as the continuous 3-4 week observing time of each

survey would allow identification of -a decaying trend._ The apparent deficiency

of weak (S < 0.1	 S	 ) transients indicated by this observation thus
_	 crab.

strongly suggests that the Type II transients occur less frequently than

permitted by the ridge constraint 	 (i.e., T
II ti	 10 -

2
	In fact, the pos-

a

sibility that the SSI is not sensitivity-limited to these sources, (at

-	 .01 	 S	 -
Socrab) would imply L'n>, 4 x 10 36 erg s 1 , roughly consistent with

that defined by the estimated lower limit on 
TII 

and Equation	 (5-1c),

L	
>. 
2 x 10 36 erg s-1°

An upper limit to 
-r	

may be estimated from the rate of detection

r.
of the Type II sources (at least two unambiguous sightings were made in

the first year of Ariel 	 5 operation, with several	 additional	 candidates

reported 'in IAU Circulars 	 (cf. Table 4.1), and the fact that the marginal y

sensitivity of the A,SM to such short-lived, weaker sources suggests that
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we have not observed a significant fraction of those at a maximum flux

in excess of ^, 1/3 S	 Thus, a reasonable estimate for the longestcrab
mean interval between source occurrences is 

T
II ^ 0.2 yr and Equation

(5-1c) now implies (allowing for a non-detected source rate (S > Scrab)

of ti 1 yr	 anan approximate (conservative) upper limit to the Type II	 r

peak luminosity of L 	 1 x 1038 erg	 1 , in rough agreement with that

derived above on the basis of the observed fluxes and galactic longitudes

of A1118-61, A0535+26, and 3U1735-28	 It is interesting to note that

the deduced range of 2 x 103 6 ti LII (erg s -1 ) ti 1 x 103$ is reconcilable W{

with the tentative identification of both A1118-61 and A0535+26 with OB

stars (V (A1118-61) ,, 12, Chevalier and Ilovaisky 1975; m B (IIDE245770/

A0535+26) ti 9.5, Liller 1975) at distances d > 1 Kpc (dl > 10 and 3

L37 ti 2 and 4, respectively, assuming absolute magnitudes and interstellar

P	 ` ).	 galactic	
p

absorptionon of My ^-5 and Av ^,2	 As shown in the alactic model from

21 cm observations, Simonson 1975) of Figure 5.3, the luminosity ranges

for both classes of transient sources are roughly consistent (except

for an apparent deficiency at longitudes 00 < k < 180°) with the initial

assumption of an approximately homogeneous spatial distribution.

1
Although the total number of instantaneous ('ON') transient sources

is too small to contribute an unresolved source component to a galactic

ridge (Ni^I ti 2, NM I . 10), the total number of quiescent, potential

transient sources (Nq ),maybe estimated from the observed mean recurrence

times(rec)-'and upper limits on T, and compared with the ridge upper

limit (Equation 5-2). The approximate number of transient sources in

the quiescent state is simply N q = Trec/T , yielding limits on the total

Type I and II source populations of 10 ti Nq I_	 500 and 100	 Ng I I x,5000,

where we have taken 10	
Trec (y

r) ti 50 as a conservative range to the

t	
__

':	

jl
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mean. recurrence period of the transients (well within the mean of Aql

X-1	
(Tree 

ti 1 yr) and A0620-00 
(T rec 
	 58 yr) and the average frequency ?

of the recurrent novae, T rec ti 10-80 yr).	 Such a large number of weak9

sources (Lq 16 103' erg s -1	 since ^-max^ Lmin ^^'	
10 3 )	 could contribute an

unresolved source component to the ridge, and Equation 5-2 may now be

used to obtain a crude upper limit to the product of the quiescent state 1

luminosity and number of sources in that state:	 f r

-L N	 _
1
	_ 

3q q	 < Ln	 < 8 x 1p-30 
ergs	 cm	 ;

s2^r R2 h a

2

L9Nq	
ti	 2.6 x 1037	

( 15 RKpc^	 ( .5 Kpc)	
erg s-1•
	 (5-2b)

The estimated lower limits to the quiescent state populations then imply

quiescent state luminosities L2 x 10 36 erg s -1	 and L	 < 2	 x 1035
qI	 qII

erg s -1	 (h 'u 0.3 Kpc) ,	 roughly consistent with the observed ratio Lmax^

Lmin	
> 10

3
 and 

Lmax 
(I;II) ti	 2 x 1039 ;	 1	 x 10 3$ erg s

-1
,'	 Note also that

an actual mean recurrence time Trec larger than the estimated lower limit

and values of T	 smaller than the derived upper limits 	 (TI <	 l yr;	
TII <

'	 10-1 yr) will	 both tend to decrease the upper limit on Lq. 	 Thus, the

i	
approximate number of dormant transient X-ray sources in a roughly uniform

galactic disk distribution is reconcilable with the deduced maximum lumi-

nosities, peak/quiescent luminosity ratio, and the observed upper limit

to a`galactic ridge.

It is interesting to note the similarity of the suggested luminosity 1

sub-classes for the transients to the proposed bi-modal luminosity distr`i-

bution of the more permanent X-ray sources (cf. Margon and 0striker 1973

and Figure 5.4), with the brighter group emitting at a luminosity consistent

a

S
-	 J

i'
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j

with an Eddington-limited 1 M ,o secondary, and the weaker group radiating

at a luminosity which 
is 

at least an order of magnitude lower.	 It is fz`a.

clear from the derived sp'?ati,;l 	 distribution and peak luminosities of the

Type I/II transients that ntit"^Y class can be closely related to the

weak,  high-latitude" transients.	 In addition to the short-lived nature

(minutes - days) and low fluxes at maximum (S	 ti 0.1 
Scrab)^ 

the mean
r

a	 max

galactic latitude (JbJ ti 400 ) of four sources identified with this group

(

(A1103+38, MX2346-65, A0000+28, and A0353-40; Cooke 1976) implies a

source population comprised of weak, local objects (d 	 3; L x ti 1035 erg 3

s 1 )	 and/or strong extragalactic sources (d 1 >	 500, L x	10	 erg s-1).
r
r..

We conclude this Section with a re-examination of the transient s

source spatial	 distribution.	 On the basis of the luminosity ranges for r

the two source subclasses, we now obtain mean displacements frcm the

galactic plane of 0.3 ti,Jz I J(Kpc) ti 1.3 (Cen	 X-2,	 Cen	 X-4,	 301543-47,

t	
A1524-62, A1742-28, A0620-00)	 and 0.04,<,(zIIJ

	
(Kpc) <	 0.3	 (3U1735-28,

A1118-61, A0535+26)`.	 This suggests that the 'Type'I/II subclasses may be

further differentiated in terms of the thickness of their respective disk

scale heights', although a larger sample is clearly required for a more

reliable estimate of IzI`.	 With regard to stellar population subdivisions,

we note that the Type II sources are consistent with Population I objects
x

(Extreme Population I: 	 z1 ti 120 pc; Older Population I: 	 I z1 ti16 	 pc,

Allen 1963), while the Type I'transients are reconcilable with a Disk

Population (1z	 ti 400 pc) or Intermediate Population II	 (Izl ti700;pc) dis- -.

tribution (cf.,Allen 1963; Oort 1958), and that of the older population

permanent" X-ray sources 6 .	 Note that this further supports our assumption

6According to Gursky and Schreier ('1974) sources belonging to this group are

1

Sco X-1, Her X-1, Cyg X-2, and Cyg X-3, with displacements from the plane
ranging from z ti 0:1 	 - 4.0 Kpc.
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of a roughly uniform disk distribution	 (vs. spiral	 arms)	 for the over-all

transient source sample as the spiral arms are characterized by a scale

zheightg	 I	 l ti 160 pc (Extreme/Older Population L, Allen 1963). 	 It is . further ^	 z
x

interesting to note, finally, that this apparent spatial differentiation is e
a

also consistent withthe association of the Type I/I. transients with low-
f

mass, late-type binary systems, and massive, early-type companions,

respectively. 4

C.	 Observational Constraints on Source Models

A variety of mechanisms have been suggested to interpret the phenomenon

of the transient X-ray sources.	 In this section, we critically evaluate

the proposed models in the context of the characteristic temporal and -

spectral properties from the individual source observations (Chapter

IV), and the	 additional	 constraints imposed by the results of the two

preceding sections.	 In view of the latter, we confine this discussion r
a

to systems capable of producing X-ray luminosities on the order of L x ti

1036 - 1039 ergs
-1
	and consistent with a galactic disk distribution.

Notwithstanding the close similarity of the transient X-ray source light-

curves to the optical	 variations of the classical
7
 novae, we shall	 attempt

PC

to demonstrate that the observations are best explained in terms of episodic

accretion in normally weak (quiescent-state luminosity Lx	 1035 erg s-l)

X-ray binary systems. 	 It is further suggested that the proposed different-

iation of the transients into two sub-classes may arise from the nature

of the optical	 companion, with late (dwarf, main sequence, sub-giant)

vs. early (OB giant, B emission) type stars associated with Types 	 I and

II, respectively.

i.e.	 objects in which the outburst results from explosive thermonuclear
burning on the surface of a white dwarf, as distinguished from accretion
mechanisms associated with some dwarf and recurrent novae.
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-	 1.	 Classical	 Novae x

a.	 Models

The	 classical nova phenomenon, characterized by a rapid rise j

(t	 `" hrs-days) by ti 10-12 magnitudes (L	 /L	 ti 104-105 ) followed
-rise	 max	 min I^

by a gradual decline back to the pre-nova state (see Figure 1.5), is
i

quite similar to the phenomenology of the transient X-ray sources-. 	 Inter-

estingly, the total energy released 
(Etot	

1044 - 10
45
 ergs, Schatzmann

1965) in the nova outburst is comparable to the X-ray energy output of

the 'transient sources (Ex = LxTdti 1042 - 1046 ergs), and the observed r

nova spatial	 distribution	 (Disk Pcpulation, Allen 1973) is not irrecon-

cilable with that of the Type I transients. 	 Additionally, the interaction

of the expanding shell of gasejected in the initial	 thermonuclear runaway
_ r

with the surrounding medium provides a natural mechanism for X-ray production

similar to that of the supernova remnants.	 Indeed, Edwards (1968) suggested

that the roughly monotonic cooling observed in Cen X ­ 2 could be accounted x,	 y

for by expansion of the circumstellar envelope surrounding a nova shortly
i

after outburst, with the X-rays originating in an expanding shell of shock-

heated gas.	 In a modification of the nova model, Van Horn and Hansen

(1974) replaced the accretingwhite dwarf with a low-mass 	 (M 
<

0.15 Mo )"

i

t	
3

neutron star, with the outburst resulting from thermonuclear shell	 flash

of accreted hydrogen (M 'u 10
-1 2 M

o yr-1 ) on the neutron star 'surface.

a

r

We note immediately that a serious objection to this model	 on theoretical

grounds is raised by the conclusion of Borner and Cohen (1973) that the

occurrence of such low mass neutron stars in nature is highly improbable A

(M	 ti 0.2 M ).	 Two additional nova-related models similar to that of
ns	 e

t	 Edwards were invoked to interpret the early observations of A0620-00,

particularly in light of its identification with the recurrent nova V616
3

r



82

Monocerotis.	 In the "colliding shells" hypothesis (Brecher and Morrison iz

1975) and the nova model of Gorenstein and Tucker (1976) the X-ray emission

is hypothesized to arise from interaction of the expanding shell with
'f
j

previously ejected shells or the ambient circumstellar material, respect-

ively.	 Finally, a nova-like model in which ` the outburst results from

isothermal expansion of a dense H II 'cloud (unspecified ejection mechanism) r	
:

was proposed by Manley (1967) to explain the early observations of Cen X-2. r

5

b.	 Comparison with Observations

The hypothesized association of the transient X-ray sources with

ordi nOry optical novae is contradicted by several 	 general observations,

which may be summarized as follows:

(1)	 The lack of nova counterparts (mv ti 15) for all of the

transients except A0620-00 (which is probably not a classical nova, as i

discussed below).	 This implies an absolute visual magnitude at maximum

of My ti 5-5 log d^	 -A^ (recall that di =	 d/1Kpc), which for distances

d	 = 1-10 (and modest interstellar absorption), requires the optical

counterparts to be`', 5-10 magntidues fainter than the observed range

for novae(M
v
 =	 -5); t	 3

(2)	 The absence of detectable X-ray emission from optical novae.

The upper limit to such emission for the eight novae reported since 1974 1

_	 _	 K
October from the ASM (Sx ti 0.1	 cm 

2 
s 1 , 1cr) implies an approximate upper

3

limit on the ratio of the optical to X-ray (3-6 keV) luminosity (assuming

Mv _ -5) of L x/Lo pt ti ,01 d	 A more stringent upper limit was obtained

by SAS-3 for Nova Cygni	 1975 (L x/Lopt	 10-4, Hoffman et al.	 1976), which

= 10 3 , Doxseymay be contrasted with that measured for A0620-00 (Lx	
optpt

et al.	 1976);	 and
r	

_
i

3

IL
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(3) The estimated frequency of occurrence of galactic novae

(", 100 yr 
1 

Allen 1973), vs. that deduced for the transients, particularly

the Type I sources (^ I -1 ǹ, 10 yr 1 ) . t

It is clear from these considerations that ordinary classical novae cannot

.^	 f
be directly connected with the transient X-ray sources.

In addition to the difficulties encountered by the nova association

listed above, a number of the individual transient source observations

are also inconsistent with nova mechanisms. The identification of A0620-

00 with a recurrent 'nova last erupting in 1917 (Eachus , Wright, and Li l l er

1976) renewed speculation that some of the transient sources might originate

in nova outbursts occurring under "unusual" circumstances (e.g., presence

a
of previously ejected shells or dense circumstellar material). A number

of difficulties with this association in the case of A0620-00 have been

pointed out, however, such as the absence of stellar absorption and emission

lines (Gull et al. 1975; Boley`et al`. 1976), the high X-ray to optical

luminosity ratio, the inconsistency of optically thin bremsstrahlung in

producing the observed optical and infrared radiation (Kleinmann, Brecher,

and Ingham 1975), and physically distinct radio emission from that observed t

in several novae (Owen et al. 1976). With regard to the-X-ray observations,

in Chapter IV we noted an apparent discrepancy between the observed ex-

ponential decay and the 1/t fall-off expected in several nova models (Edwards'

1968; Brecher and Morrison 1975). The correlation of the X-ray and optical

emission during the October and February increases represents additional,

convincing evidence against a traditional optical nova origin for A0620

00, since in the nova models the X-ray and optical emission is hypothesized

to originate in two well-separated regions (i.e., hot, expanding gas

shell vs. surface of'a white dwarf)'. For the same reason, the possible

_	 ,i
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existence of a modulation of the X-ray and optical emission of A0620-00

at the suggested	 718 period represents additional evidence against a '	 s

nova model.

Although A0620-00 is the only transient source for which comprehensive,

concurrent optical observations exist, the characteristic X-ray behavior

exhibited by several earlier sources is apparently inconsistent with the

nova mechanism, as well.	 For example, the extended, low-level 	 pre-flare x

emission from A1524-62 and the pronounced precursor peak in the rise y
r

phase of this and other transients is inconsistent with the very sudden

rise (t	 hrs) observed in some common novae and that expected in
rise

the thermonuclear shell flash model of Van Horn and Hansen (t 	 ti minutes).
rise

The substantial secondary maxima exhibited months to years after primary

maximum by the sources A0535+26 (Joss 1975), 301543-47 (Li, Sprott, and

Clark 1976), 3U1735-28 (Pounds 1976a),and A0620 = 00, and the relatively

short recurrence time inferred from Aql	 X-1 and A0620-00 further distinguish

R

these objects from the "one-shot" behavior (i.e., 	 fret > 103 yr.) of

the classical	 novae.	 In addition, the typical decay light curves are

' better fit by an approximately exponential fall-off, as opposed to the

tpower-law decay (L = L	 }	 ) expected in the expanding
too

shell `(a = 1)	 or cloud ( a =- 3) mechanisms.	 Finally,	 the spectral

observations are also inconsistent with the expected initially
_	 -2/3

rapid cooling of an expanding nova shell	 (T = To	
{ t	 to }	

for an

to

Edwards-type model),although a more rag 	 dual	 cooling over the decline has

F been observed in several	 sources	 (Pounds 1976b)..	 In conclusion, there

appears to be sufficient evidence at this time to allow rejection of the

hypothesized association of the transient X-ray sources with the classical

nova phenomenon.,
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2.	 Binary Accretion Models

We now discuss the evidence in favor of the standard binary

accretion mechanism underlying the X-ray emission of the more stable galactic

sources.	 As demonstrated in the preceding sections both the characteristic

peak luminosities and spatial distribution of the transients are completely

consistent with those of the variable galactic sources. 	 In addition,
t

`	 the transient behavior of several 	 "permanent" sources,	 (e.g., Agl`X-1)

and the less extreme, long-term variability of other catalogued sources fu

(e.g., Cyg X-1, Cir X-1, Cyg X-3)	 evident in the ASM observations suggest

that the transient X-ray sources may be understood in terms of similar

systems, differentiated only in the greater instability of the mass-exchange

process;

A number of mechanisms have been proposed to explain the charact-

eristic variability of the transients within the basic accretion hypothesis,

including: 

(1)	 Modulation of the flux analogous to the 35d cycle of Her

X-1;	 and

(2)	 Episodic variations in the rate of mass transfer to the

compact object resulting from:

a)	 orbital-phase-related variations in an eccentric-orbit

binary;
4

b)'	 intrinsic vari-ability of the optical 	 companion	 (e.g.,

dwarf and recurrent novae; Mira variables; OB giants; B emission stars);

c)	 relatively steady mass-exchange interrupted by "discharge"

of an accretion disk due to triggering of an instability;
i

d)	 temporary decrease in a supercritical accretion rate

(i.e., totally self-absorbed in the X'-ray.region); or

e)	 presence in a globular cluster.

f	
,
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In the remainder of this Chapter the above models are compared with the
J

ASM and other available observations.

a.	 Her X-1 Type Modulation

r
The a priori possibility that the "outbursts" of the transient

X-ray sources may actually represent the modulation of a ('formally invisible)

"permanent" source analogous to the 35 d cycle$ of Her X-1 may be effectively G

ruled out on the following grounds:

}

r

(1)	 the irregularity of the transient source phenomenon,	 including

possible aperiodic recurrence (e.g., Aql 	 X-1), secondary maxima, and ex-
.	 1

tended, recurrent, low-level	 emission is in direct contrast to the high

regularity of the 35 d cycle	 (cf.,	 Figure 1012);

(2) `	the fractional	 Her X-1 ON-time (T
ON /P35 
	 0.3) over the

35d cycle implies_, assuming a roughly similar geometry, a modulation_

cycle for the transients (TON ,`,, .5 yr) of 
PMod 

N 2 yr, as opposed to the

estimated mean recurrence period 
Trec u 

10 yr;
F

(3)	 the concurrent optical /X-ray variations of V616 Mon/A0620-

00 indicate a physical variation in the X- ray/optical emission (Hz Her

does not vary with the 35 d cycle, as Her X-1	 is continuously 014) 9 ; and

(4)	 the expected increase in low-energy cutoff with declining

flux (i.e., increasing obscuration by the accretion disk) has not been

observed in the transient sources. •

$see Brecher (1972), Katz	 (1973), Robert (1974), and Petterson (1975)

for precession-related models of the 35	 cycle.

9Note that the long-term ( ti 10 yr) variation of Hz Her is reconcilable

with changes in the accretion rate to Her ,X-1	 (optical emission linked
to X-ray flux via heating effects; Jones, Forman, and Liller 1973).

t
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While a Her X-1-like modulation is irreconcilable with the majority of

transient sources observed to date, such a mechanism cannot be ruled

out for the regularly recurrent "transient" 3U1630-47 (cf. Chapter IV).

In addition, Brecher (1975) has suggested that the slow "pulsation" periods

of the transient sources A1118-61 and A0535+26 may represent the free

precession of a neutron star with spin periods in the range 0.01 	 0.1s,

and in this sense may exhibit a Her X-1-like 35d) modulation.

b. Episodic Accretion

t

1

i
^	 f

X

i)	 Eccentric Orbit Binary Hypothesis

The standard scenario of the formation of an X-ray binary
4

system involves evolution of the more massive star to the point of a

supernova	 explosion, leaving behind the less evolved companion and a

newly formed neutron star/black hole (cf, dp Loore et al. 	 1974). "Since

the explosion may occur assymmetrically,,a non-negligible eccentricity

a

of the resulting' orbit would be expected initially, followed by a gradual a

re-circularization due to the effect of tidal 	 forces	 (Stutantyo 1975).

Indeed, the X-ray pulsars Her X-1	 and Cen X-3 have both been shown (via

measurement of the Doppler-shifted ,pulse periods) to be in nearly circular

orbits about the companion.	 On the other hand, anon-negligible eccentricity

( E " 0.14+0.05; Hutchings, 1974	 has been derived 	 for the slow l y pulsatin gg	 )	 Y P	 9_

source Vela X-1.	 Several	 authors	 (Clark and Parkinson 1975, and references 

therein) have suggested that the observed outbursts of the transient

X-ray sources may signal` the sudden turn-on of accretion during the approach

of periastron in a long-period, eccentric orbit binary. ` As discussed

i

iOMilgrom and Avni 	 (1976) have recently noted, however, that this value may
be significantly overestimated, and the orbit essentially circular.

AN
41
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earlier, only three sources are known which have undergone repetitive,

transient-like outbursts.	 The regularity of the proposed period of

301630-47 (P = 615+5d) is consistent with the relatively precise timing

required in this model, but is also reconcilable with alternative periodic

mechanisms such as the expansion-contraction cycle of the long period
a	 r

(Mira)	 variables or the presumably precession-related 35d modulation of

Her X-1.

The irregular flare cycle (P 	 435d + 10%) proposed for Aql X-1

(Kaluzienski et al.	 1977b), on the other hand, is very difficult to inter-

pret with such a mechanism, as are the secondary maxima and irregular,

low-level emission exhibited by several transients.. 	 _Another serious con-

straint placed on this hypothesis are the eccentricities implied by the

duration and recurrence rate of the outbursts.	 Avni, Fabian, and Pringle
i

(1976) have shown that lower limits on the eccentricity of transient source

orbits, can be estimated from the observable parameters f = L 	 /L	 and
t

2 t	
max	 min

g =	 P 1 , where 2t 1	is the total outburst duration and P is the orbital

period (P	 t2 	observed interval for which L < Lmn ).	 The implied re-

sultant eccentricities are, in general, prohibitively large 	 (viz., s

0.9;	 cf.	 Table I of Avni,	 Fabian and 'Pringle), and in the case of A0620-00,
b

e	 >	 0.99.	 These authors have therefore concluded that, since the prob-

ability of production of such large eccentricities in a supernova scenario

is extremely small and because circularization of the orbit should produce

a uniform distribution of eccentricities (which has not been observed),

the association of the majority of transient X-ray sources with eccentric'

orbit binaries is unlikely.

ii)	 Variable Companions

Asdiscussed'in Chapter- I and summarized in Table 1.1, a wide

range of temporal	 variability, indicative of stellar pulsations, explosions,

a
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and chaotic mass exchange, has been observed in the optical region of

the spectrum.	 In particular, the quasi-regular variations of the "eruptive" 1

variables	 (e.g., dwarf and recurrent novae), semi-regular expansion of
it

the long-period variables	 (e.g., Mira variables), strong, variable stellar r'

winds of early type giants	 (e.g., OB stars), and erratic mass ejection

-	 episodes of B emission stars make these objects attractive candidates

}

for binary companions in transient X-ray sources.	 We now illustrate

the consistency of such associations with observation.

X-ray Dwarf Nova Model	 (Type I Sources

The existence of-a class of binaries exhibiting nova-like

optical outbursts and cons-;sting of a red and blue dwarf pair (hence,

"dwarf novae") has been known for some time.	 In contrast to the standard

nuclear burning interpretation of traditional novae, several dwarf nova

models have	 been proposed in which the outburst is attributed to episodic

mass transfer from the red to blue component (Bath et al.	 1974; Osaki

1974; see Figure 5.5).	 The optical emission is presumed to arise from

reprocessing of UV and soft X-ray radiation in an accretion disk, at

'	 I	 a "hot spot" where the accreting matter intercepts the disk, and from

X-ray heating of the red star's atmosphere. 	 Avni,	 Fabian, and Pringle

w	 (1976) have suggested that A0620 = 00 may represent a dwarf-nova-type system

with a neutron star or black hole as the accreting object. 	 In this model,

the gravitational energy released via accretion onto the collapsed member

resulting from episodic overflow of the red companion's Roche-lobe is

t
•	 ;'	 responsible for the X-ray outburst. 	 'While in "normal" dwarf novae the

bulk of the radiation emerges in the optical 	 and UV bands, X-ray emission

dominates in the red dwarf-neutron star/black hole system and a transient

-	 X-ray source is produced.	 The authors showed that for a distance of
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i

1-3 Kpc, the optical observations are compatible with X-ray heating of

an optical primary of spectral class later than G5V, and therefore mass

j
transfer must occur by Roche-lobe overflow.	 The accretion rate required

j
to generate the observed X-ray luminosity of A0620-00 (L xn	 2 x 1038 d2'

+.:
' erg s -1 , 1-10 keV) is	 (assuming 10% mass-energy conversion efficiency) r_

`I.
_	 -8	 2	 -1

Mmax^	 -Interestingly, this rate (for d l ti 2,) is

: within the l imits of that predicted for self-excited mass transfer in
a

dwarf novae (M n 1.5 x 10 -7 M. yr-1 , Bath et al. 1974).	 We note that

Endal, De`Vinney and Sofia (1976) have proposed a similar model 	 for A0620-

I' 00 in which an Algol-type binary undergoes sporadic mass transfer from

a sub-solar mass companion (dwarf or subgiant)'onto a white dwarf, citing

I
the difficulty in forming neutron stars or black holes i'n low mass systems.

Calculations of Fabian, Pringle, and Rees 	 (1976), however, have shown

iÌ_ that luminosities exceeding"u 10 36 erg s -1	 are problematic via accretion

onto white dwarfs, which is apparently well below the peak luminosity

I of A0620-00.	 Furthermore, the established existence of low-mass X-ray

` binaries	 (e.g., Her X-1,Sco X-1) and the possibility of their formation

'via modes ,other than supernova explosions 	 (Whelan and Ihen 1973; Gursky

Iti.
1975;	 Flannery and Van den Heuvel 	 1975; Canal and Schatzmann 1976) lessen

1 the objection to A0620-00 as such a system.

The X-ray dwarf nova analogy is consistent with other aspects of

I A0620-00.	 In particular, the correlation of the X-ray and optical 	 increases

- is expected in such a system where the optical and _X-ray emission originate

in a common region (i.e., accretion disk) or are connected via a reprocessing

mechanism (e.g.', X-ray heating, of the "normal" star). 	 In addition, the

I ^

E
reported optical period at 3.92 during the early decline and periods

? at approximately twice this value from X-ray and optical observations

f
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during the later decay may be indicative of a binary system in which

the optical variability i-s initially dominated by an extended emission

region viewed from differing aspects (similar to the do4ible-maximum light

curves of HDF 226868 or Hz Her in the long-term X-ray 'OFF' state), followed

by predominance of X-ray heating of the contracting star at the orbital

period ( ti 7d8), reminiscent of the Her X-1 - Hz Her system in the long-
R	 d

term X-ray 'ON' state. 	 The absence of X-ray eclipsing (the 7.8 modulation

.	 reported by Matilsky (1976) is sinuosoidal rather than eclipse-like, and

the present data indicate that this modulation is certainly not present

at the reported level of ti 50% during most of the observable lifetime
f

of the source) is not surprising with the relatively small optical	 star

(Avni, Fabian, and Pringle (1976) have computed an eclipse probability
i

of ti 37% for reasonable system parameters). 	 We _should also point out

here, however, that the existence of a 7a8 binary period is difficult

to account for in the dwarf nova model where the longest expected period

is ti 3 days (Avni,	 Fabian, and Pringle 1976), independent of the mass

of the X-ray component.	 The nature of the optical companion in A0620-00

is thus still	 uncertain,, as the evidence is apparently inconsistent with

both a dwarf and giant class star.

Several characteristics of A0620-00 are consistent with cataclysmic

accretion models in general,;	 Ricketts, Pounds, and Turner (1975), for

l	 example,- have pointed out that a marked softening in the X-ray spectrum

during the rise phase is consistent with a growing accretion disk, and

Stoeger (1976) has discussed a scenario in which an instability in the

7,	 developing disk accounts for the observed 	 "p	 g	 "pre-cursor"_peak (Elvis et

al. 1975).	 The resemblance of A0620-00 to other established X-ray binaries

'	 is also significant.	 Several observers have noted a resemblance between

s --
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V616 Monocerotis and Sco X-1, especially i n the colors (Eachus, Wright,

and Liller 1976),,B magnitude, and ratio of X-ray to optical radiation 1

at maximum light (Boley et Al. 1976), and the appearance's 3 weeks after

maximum of weak emission at NIII 1X4634-4640 and He II X4686 (Peterson,

Jauncey, and Wright 1975),	 Cowley and Crampton (1975) have reported rr

"hotevidence for a	 spot" on the accretion disk in Sco X-1, analogous

to that expected in the dwarf nova models, and have noted the similari ty

of the implied masses and 0,787 period of the Latter source to those

of old novae and cataclysmic variables.	 The A0620-00 transient radio

event has been compared by 'Owen et al. 	 (1976) to similar episodes in'Cyg

X-3, which has also been likened to a dwarf nova system (Davidsen and

Ostriker 1974).	 Finally, Citterio et al.' (1976) have pointed out that

measurements of the infrared flux made in 1975 October are consistent

with a source that is self'-absorbed in that band, similar to the case

of Sco X-1.	 The simi,larit'ies of the optical, 	 infrared, radio, and X-ray

characteristics of A0620-00 to known" galactic X-ray -sources clearly favor

models involving sudden changes in the rate of mass transfer in binary
y

systems as the triggering mechanism in the transient X-ray sources.

The problem of divergent distance estimates for A0620-00 can also
t

be resolved within the context of accretion models.	 Eachus, Wri ght, and

Liller (1976) have derived a distance of d = 11 + 3 Kpc based on the

typical rate of fading of other recurrent novae, while a more conservative

estimate of ,5 ǹ, d l ti 3 is consistent with •the sharp interstellar absorption

lines observed by Gull, et al.	 (1976), and an Eddington-limited luminosi ty

at maximum for a 1 - 10 M8 accreting object,	 Although the optical evolution

of the-"X-ray dwarf novae" may resemble that of recurrent novae,` the l

peak optical	 luminosity will	 be considerably less since the radiation

.aw.a....^n.aua..n..o....axz^ua..xw.....c... ^'@'
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' emerges primarily in the X-ray region. 	 The assumption of an accretion

rate comparable to that of ordinary recurrent novae and the observed ratio E

of L x/Lopt = 10 3 imply an absolute visual magnitude at maximum of M
v
 ti	 1

instead of the typical	 value of My =	 -6 (Payne-Gaposchkin 1964). 	 The

corresponding distance of d = 500 pc should be taken only as a rough lower
i -)

limit, since 'effects such as self-excited mass transfer will 	 tend to
t

increase the rate of mass exchange in the X-ray system (Bath et al. 1974)a

We note in this regard that Wu et al. 	 (1976) have derived a distance

to-A0620-00 of d ti 630; pc from UV observations of the 2200 A interstellar
r^

absorption feature, while Wickmrasinghe and Warren (1976) have found a

value (based upon interstellar reddening)of d >	 2 Kpc. I;

The irregularity of the proposed flare cycle for Aql X-1 has several

obvious implications for models of that source, which are particularly

' relevant to the present' discussion in view of its similarity to the Type

I transient sources. ` As noted above, the observed scatter in the presumed ,

+- flare period is inconsistent' with the relatively precise timing expected

from a binary phase-related variation in the accretion flow. 	 The same

- consideration decreases the likelihood of a mechanism involving expansion

= of the red giant component in a Mira Variable-type binary as proposed

tl;
for the transients U1543-47 (Li, Sprott, and Clark 1976) and A1118-61

(Fabian, Pringle,'and Webbink'1975), or of a Her X-1	 like precession-governed
,

s ::

modulation (as opposed to actual flares). 	 As the observed X-ray phenomen-

ologyis not unlike that of the optical light curves of dwarf novae (and

some recurrent no 	 compare Figures 14 and 4.9 = 4.11), we suggest

a
that these observations are most easily interpreted in terms of an X-ray

dwarf nova binary model. 	 Applying; the empirical	 period;= amplitude relation

for U Gem stars and recurrent novae of Payne-Gaposchkin (1964), the inferred

,



94

^min	
500 (assuming that most of the radiation emerges inratio Emax^ s

is

I
X-rays) yields an expectation value for the interval between flaring

episodes of ti 465 days.	 The excellent agreement between the predicted

^

k

k; and observed mean flare cycles should not be taken literally, as the un-

certainty in 
Emax/Emin 

implies a correspondingly wide dispersion in the

expectation flare interval. 	 Recognizing further that X-ray dwarf novae k

may deviate significantly from period-amplitude relations describing r

thei r optical	 analogues	 (Avni, Fabian, and Pringle 1976), we can only
r

- conclude that the observed flare interval 	 is not inconsistent with that

which might be expected from such a source,.

The close similarity of the two ASM flare light .curves for Aql X-1

is another model	 constraint, as it suggests detailed reproduceability.

This characteristic of the source behavior can be reconciled with accretion

dwarf nova models invoking relatively continuous mass transfer to an

accretion disk which is eventually "dumped" by an instability (Osaki 1974)

or, alternatively, quasi-periodic unstable Roche-lobe overflow of the

red star (Bath et al.	 1974) (ll)	In the former model, the similarity

of the flares results from the comparable amounts of material accumulated `,	 l

between episodes, while in the latter a high regularity of the magnitude>

YL

l

of Roche-lobe spills and/or a feedback loop (regulated first by self-excited

transfer and later by Eddington-limited flow) may be implied.	 Finally,

I

`

we note that the non-flaring source behavior observed by UHURU;(Jones

a

7

1976) may be analogous to the "standstills" observed in several dwarf

` novae including Z Cam (S	 ti 0d 3 - 0.5 S	 Osaki 1974) .
standstill	 max

T1 The recent report of an additional, lower-level outburst (Watson 1977;
Holt and Kaluzienski 1977) in 1977 January would apparently favor the
latter mechanism.

s

4
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We conclude this sub-section with a few general comments on the

dwarf	 nova analogy to the Type I transient X-ray sources. 	 While the
fj

probabil ity of observing eclipses in these sources is relatively low

0.37 for A0620-00-ty pe systems),  the probability of observi ng no occultationsyp p 	 y	 9
f

for the three sources of this class for which detailed temporal analyses

on time scales of hrs-days were possible is only_P r^,	 (.63)3 =	 0.25 4

^,	 (v 0.06 including Cen X-2,	 Cen X-4, and 3U1543-47).	 While this is not

unreasonably low, it may indicate the presence of an extended X-ray emission

region i'f these systems are i ndeed-Close;1-ow-mas-s-,--Roche- lobe  overflow

binaries.	 Finally, we note the consistency of the detection rate of the

Type I`transients	 ( 'u 1-3 yr' 1 ) with that deduced by Whelan et al.	 (1976)

for detectable outbursts of the A0620-00 type (0,2 < 	 f(yr
-l

) < 20), based

on the initial	 conditions, mass-ratio distributions, space-density of

dwarf novae (Kraft 1967), and relative eruption intervals of dwarf novae

and A0620-00-like objects.	 Although we have concentrated on the _dwarf

nova analogue, similar systems with variable, late-type companions 	 (i.e.,

not strictly limited to red dwarfs) are also reconcilable with the obser-

vations.	 In particular, some of the objects classified as "recurrent t

novae" (in addition to V616 Monocerotis) may actually be more closely

related to the phenomenon of the ;Type I transient X-ray sources than

that of the classical	 novae.

Mira' Variables

An alternative mode of mass exchange via Roche-lobe overflow, .`

as would result from expansion of a Mira variable in orbit about a compact

object, has been proposed as ;a possible mechanism for several of the transient

X-ray sources.	 This association was suggested by the presence of variable,

M-type giants within the X-ray error boxes of 3U1543-47 (Forman and Liller

f



96

1973), and A1118-61	 (Fabian,	 Pringle, and_Webbink 1975).	 In addition,

i^

the overlapping error boxes-(ti 10-15 0 in diameter) of two early transient

x,

source candidates in the constellation Cetus (Cet X-1, Barnden and Francey

1969; Cet X-2, Shukla and Wilson 1971) are centered on Mira (0 Ceti)

itself (cf.	 Davison and Sanford 1976).	 -Li, Sprott, and Clark (1976) have

shown that the X-ray luminosity of 3U1543-47 could be produced if a fraction
F	 i

3

6 of the surface of the expanding giant is accreted onto the collapsed 4-

object, where 6	 ti	 10- 2 - 10- 3 .	 These authors have further suggested

that the observed erratic, smaller fluctuations superposed on the major

z,

quasi-periodic optical variations could cause smaller Roche-lobe overflow

events and thereby account for the secondary X-ray maxima of 3U1543-47.

A Mira variable mechanism is apparently inconsistent, however, with

several individual 	 source observations.	 For instance, this association

-	 can apparently be _ruled out for A0620-00, as B magnitude measurements
; 	 1

-3

(Ward et al. 1975) of V616 Monocerotis in the quiescent state (Palomar is

Observatory Sky Survey Charts, circa 1955) imply a distance of d ti 15

Kpc (for an assumed red giant), which would place the source well outside

N

of the galaxy and imply an unrealistic X-ray luminosity in excess of

ti 2 x 1040 erg s
-1	

Additionally, the correlation of the 3-6 keV and

optical fluxes of A0620-00 makes a red giant primary improbable in that
1

the optical emission should be dominated by the giant, and relatively
r

insensitive to variations in the X-ray luminosity.	 I'n the case of Aql

X-1, although we cannot conclusively rule out a Mira variable association,

the observed irregularity of the flare cycle favors the more chaotic

behavior characteristic of the dwarf novae-type variables. 	 The absence

of an optical	 counterpart for Aql 	 X-1	 (MB % 17.5 during the 1975 June

flare,;Davidsen et al. ;1975) would further tend to .favor a less luminous

r _

u...	 ^_	
vY

r
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optical companion. 	 The suggested identification of the red variable }iJ

RS Cen with A1118-61 has also been weakened by Copernicus observations
i

occurring two cycles (P = 163d ) before and one cycle after its appear- s

ance, in which no X-ray emission was detected 12 (Davison and Sanford 3

1976).	 Similarly, the failure of the ASM'to detect X-ray emission
1

(S ti 0.1	 cm -2s0.1
	

.005 of the maximum flux of Cet X-2) from 0 Ceti over

three maxima of the 331d light cycle apparently lessens the likelihood of

an identification of the Cetus sources with that object 1 3.	 Finally, the

spatial distribution of at least the shorter period Mira variables

i
(P < 250 d = Intermediate Pop.	 II, Allen 1963) is in contrast to that

of the Type II transients.	 Thus, while expansion of a red giant in a binary

system is an attractive mechanism for transient mass-exchange episodes, no

x^

x firm evidence for the association of such ;systems with the transient X-ray

sources has yet been obtained.

Early - type Giant Variables (Type II Sources)

The proposed existence of a class of weak, short-duration

transients	 (Type II) attaining peak luminosities approximately 1-2 orders

iv

of magnitude less than those of the bright, long-lived sources may be
t

indicative of a smaller-amplitude mode of mass transfer. 	 The identifi-

cation of several	 "permanent"	 sources	 (e.g., Cyg X-1,,	 Cen X-3,	 Vela X-1);

with early-type giant, optical primaries and the fact that all three exhibit

2 S ti'2% and 10% of the Ariel	 5-maximum flux, respectively.

13
Li, Sprott, and Clark (1976) have pointed out, however, that the observed

variability of the magnitude of the red giant pulsations could cause the
absence of X-ray outbursts at some of the optical maxima.

F
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/Slow 	 5 - 20") suggests that large fluctuationshigh and low states (ShighS
in the density of the stellar wind emanating from such a companion could

conceivably account for the outbursts of the Type II transients.	 The

lesser amount of mass transferred and correspondingl y smaller accretion

disk might explain the lesser magnitude, shorter lifetime, and harder

spectrum (optically thin vs.	 optically thick emis;;ion region; cf., Pounds r

1976b) of these sources in comparison to those of the Type I, Roche-Lobe u

overflow transients. -
x

Several authors	 (Fabian 1975; Wickmrasinghe and Whelan 1975) have

proposed that a steady stellar wind can account for the presumed slowdown

of the initially rapid pulsar spin period to time scales of ti minutes

as observed for A1118-61 and A0535+26, and that sporadic enhancements

in this wind (from M ti 10-10 - 10_
6
 Meyr

-1
) could produce a transient

source of luminosity Lx ti 1036 erg s -	 In the model of Wickmrasinghe and

Whelan (1975) the optical 	 counterparts of these transients areOB stars

which, because the weak-wind ("sleeping phase", Van den Heuvel	 1974) stage

lasts ti 100 times 'longer than the intense stellar wind phase, leads to

the conclusion that there could exist ti 100 times as many of these dormantt
,

transients as the quasi-stable stellar wind sources 	 (i.e., of the Vela

X-1	 variety).	 If we estimate the total number of these "stable" stellar

wind sources in the galaxy ('SW') at NSW ti 10 - 100(
14)

, then the total
}

l

14
This estimate is based on the assumption that the UHURU survey is 

essentially complete for sources with luminosities La x ^ 10 36 erg s-
(cf.`Blumenthal	 and Tucker 1974;	 Sofia and Wesemael',1976).
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number of such inactive systems is N g sW = 103-104 
(15), 

which is within'

the range expected for the population of quiescent Type II transients

(NgII ti 100-5000). '	 )^

The proposed identification of A1118-61 and A0535+26 with B emission _.E

(Be) stars has led Maraschi	 Treves, and Van den Heuvel	 (1976) to speculate

that these objects could give rise to the transient X-ray emission via

sudden variations 
(16) 

in the rate of mass ejection, which could recur ij

over a time scale of years (as does the optical emission observed from

typical stars of this type).	 As the authors point out, the total amount

of accreted matter (for a neutron_ star companion) is QM = 5 x 10- 9 Nb,- a
i

or only a few percent of the amount of mass in the envelopes of Be stars
t

required for producing the observed emission lines.	 Interestingly, the

identification of a Be star counterpart for the weak 
{Lx 

ti 10 33 erg s-1)
s

source X Per (3UO352+30) suggests that this object may represent the

quiescent state of these transients and is observable only because of
a

its proximity (d `u 170 pc).	 Since the frequency of active periods in

Be stars is known to be approximately 10 -1 yr
-1	

(i.e., T	 ti 10 yr),
rec

our upper limit on the frequency of short-duration transients (T-1	 100 yr-1)
II 1

would imply, in this case, that the total number of Be transients in the
1

quiescent phase is NgBe ^, 1000, or about 10-100 times the number of observed

15 Thisnumber is consistent with the estimated number of massive close

binaries in the Galaxy, N ti 3 x 103 (De Cuyper et a!, 1976),

16
These stars have been observed to be losing mass as a result of very

j

high rotational rates, with material	 ejected from the equatorial	 region.`

1

{
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"permanent" galactic sources with massive early-type companions.	 Thus,

t

as for the case of OB stellar wind sources, the estimated number of quiescent

Be transients is consistent with the rates of occurrence and recurrence

of the Type II transient sources.	 Finally, the absence of occultations
f

rr	 f	 ..

in the two sources representative of the Type II class is not incon-

sistent 17 with their association with massive (M.
	 ti	

10 Mo) systems with

binary periods comparable to those of the "permanent" 
18 

stellar wind sources.

However, the reported lower limit of 17d to the binary period of A0535+26,

if the observed change in pulse period is due to binary motion (Rappaport u	 i

f
et al. 1976), implies that we cannot exclude the possibility that some

of the Type II transients may be characterized by relatively longer periods

than their "permanent" stellar wind counterparts.	 Until	 positive optical

identifications are obtained, however, one cannot conclusively demonstrate

that either variable OB or B emission stars are the progenitors of the

weak, short-duration transients.

iii)	 Disk	 Instabilities

Other models for the transient sources based on sudden

accretion episodes involving an essentially non-variable companion in

an X-ray binary have been proposed.	 Amnuel, Guseinov, and Rakhamimov h

(1974) pointed out a long-term, transient-like behavior exhibited by nine

17The probability of observing eclipses from neither A1118-61	 and A0535+26

is P =	 0 - r/a) 2 n 0.4 for r = 10 R	 (BO star), M = 10 M	 and binaryo	 0!T
period Pb = 5d.

1li
18For example, the binary 'periods of Cen X-3, Cyg X-1, Vela X-1, and

Cir X-1	 are 2.1,	 5.6,	 8.9,	 and 16.6d,	 respectively.
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galactic sources, the entire "outburst" occurring over a timescale of ti

4 years. They suggested that a very slow, steady build-up of an accretion

disk fed by a companion of spectral class later than F over a time of

rV 103 years until triggered by an instability could account for these

"slow" transients as well as the Type I/I1 transients 	 This type of	 j

mechanism can clearly not be reconciled with the sources for which recurrence

periods have been established, including A0620-00 
(Trec	

58 yr), Aql X-1

(Trec` 435d + 10% rms), and 301630-47 
(Tree	

615 + 5d), and also has

difficulty explaining the secondary maxima and irregular, low-level emission	
k

observed for many of the transient sources. In addition, the proposed

early -type companions for the Type II transients are inconsistent with

those hypothesized in the above model.

iv) Supercritical Accretion: Smothering

Another binary accretion mechanism has been suggested as an

alternative explanation of the relatively slow "rotation" periods of A1118

61 and A0535+26. Pringle and Webbink (1975) have proposed that the 6.75

minute period of A1118-61 may represent the orbital period of a close

white dwarf-neutron star/black hole binary system. In this model the

transient outburst is associated with a temporary decrease in the super- 	 t

critical mass transfer rate which ordinarily smothers the X-ray object.	 d

Consequently, the luminosity at maximum should be Eddington-limited, with a

u	 corresponding distance (Mx = 1 Mo ) of d ti 26 Kpc for that source. As mentioned

earlier,this`is difficult to reconcile with the galactic longitude of

A1118-61 ( see Table 5.1) . The same apparent difficulty applies to A0535+26

h	 where the distance of ti 6 Kpc would place it close 'to the "edge" of the 	 l

galactic disk. While the observed softening of the spectra of several'

transients is consistent with a progressive_ lessening of the line-of-sight
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obscuring material, this effect is alsoconsistent with a cooling accretion

1 disk expected in the other accretion models. 	 We can rule out, however,
f'

a reversion back to the original, "smothered" state, since the expected

increase in low energy cutoff with decreasing flux has not been observed
is

r

in any of the transients for which temporally separated spectral measurements

were obtained.

Large fluctuations in a supercritical stellar wind density, with

corresponding variations in X-ray self-absorption (or optical thickness)

similar to those_ presumably responsible for the long-term modulation
is

4
of several	 "permanent" sources (e.g., Cen X-3, Cir X-1), are similarly

i
unlikely as a possible mechanism for the production of transient X-ray

sources.	 Clearly, the phenomenology of these sources, including the ratio

of maximum to minimum luminosities
	
< 100), relatively frequent

Ux,min e	 j

transitions between "low" (smothered) and "high"	 (lower wind density)

states, and duration of the roughly steady "high" state emission (weeks-

months), differs significantly from that of the transients. 	 It is not

inconceivable, however, that some of the weaker candidate transients
.I

(e.g., MX0656-07) may represent such systems. 	 In contrast, the flares

of early, massive-type binaries such as Cyg X-1	 (in particular, the 1974 -
h

Aril	 increase	 triggered	 yApril	 ), presumably tri	 ered b	 increases in the stellar wind

density (Holt et al. 1976a), and hence accretion rate (as opposed to

decreases in the wind density), more closely resemble, on a smaller scale,

the outbursts of the transient X-ray sources.	 Indeed, Coe, Engel, and

Quenby (1976) have pointed out the similarity of the spectral evolution

of the 1974 April flare ofCyg X-1 and the outburst of A0620-00.

f _
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v)	 Globular Clusters

The proposed identification of the transient source candidate`

MX1746-20 with the globular cluster NGC 6440 (Forman, Jones, and Tananbaum

1976b) has suggested the possible existence of yet another class of

"transient" X-ray sources.	 This source was observed by UHURU in 1971-
;E

72, remaining approximately 20 times higher than the average flux in the

preceding and following year for a time of ti 1 1,/2 - 3 months (with no

visible declining trend during that time). 	 As Forman, Jones, and Tananbaum

have pointed out, this transient-like behavior may be reconciled with

two prominent models for globular cluster X-ray sources: 	 (1) a supermassive G

accreting black hole at the cluster center (Bahcall and Ostriker 1975;

Silk and Arons 1975), or (2) collapsed, stellar-mass objects at the cluster

core accreting either from an orbiting companion (similar to the binary

accretion models above) or during near-encounters (Clark 1975b). 	 This

I Latter binarymodel	 is interesting in its possible implications for the

transient sources (as defined in Chapter I),as Gursky and Schreier (1975)'

have noted that the companion of the X-ray object in a globular cluster

)

must be an extreme Population II	 (i.e., highly evolved) object.	 The

similarity of the proposed "globular cluster transients" to the Type I x

transients is thus understandable if the latter are indeed associated'

with late-type companions as we have suggested above (i.e., the former

objects represent Type I binary transients which are preferentially formed
)

in globular clusters).	 In addition, the overlapping spG6ial	 error boxes

of the trans' ent A1742-28 with an X-ray burster s g (Lewin 1976) is also
-a

interesting, as the two different types of variability can be reconciled
u

1 9Several	 "bursters" have been positively identified with globular clusters.



within the same accreting binary framework. In particular, one model
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for the burst sources (Lewin 1976) utilizes plasma instabilities in a

filling accretion disk surrounding a neutron star to produce the X -ray

flashes. Note, however, that the relatively thin disk spatial distribution

characteristic of the transient sources is inconsistent with the ti spherical

distribution (Halo Pop. II) of the globulars., Thus, while i`t has been

shown that some transients may reside in globular clusters, these objects

do not represent a necessary requirement for the production of a transient

X-ray source,	 F
.ri

D. Summary

Bused upon the increasing body of observations, a consistent picture

of the phenomenon of the transient X-ray sources can be constructed.

It has been demonstrated that these `sources are reconcilable with the

basic binary accretion mechanism underlying the more stable galactic

sources, distinguished from this latter class of objects primarily by

the episodic nature of the mass exchange process. As with the "permanent"

sources, good evidence exists for two distinct transient source sub-classes,

differentiated primarily according to the mode of mass transfer: (1)

k	 Roche-lobe overflow in dwarf nova-type (low mass companion) binaries,
IF

or (2) enhancements in the stellar wind emanating from a massive, early'

type companion. The characteristic parameters of the two source groups are

summarized in Table 5.2. It further appears that, in contrast to a, sharp

division of galactic binary X-ray sources into `"permanent" and "transient"

categories, a relatively broad spectrum of temporal variability exists as

outlined in Table 5.3.
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The All-Sky Monitor has played an important role in the study of if

the transient sources, establishing the galactic disk spatial distribution,

allowing estimates of the characteristic frequencies and luminosities

which are relatively free from observational selection effects, and providing

detailed light curves of several transient sources and flaring "permanent"

sources.	 A number of questions remain relatively unexplored, however.

For example, the mechanism underlying the outbursts of the optical companion

itself has notbeen specified, although several model's for such variabili ty

have been proposed (dynamical instability of a red dwarf envelope, Bath

eat al. 1974; magnetic variability of a. subgiant, Hayakawa 1976; thermal 	 ±'

instability in a weak stellar wind situation (early giant-type stars), Buff

and McCray 1974). In view of their description -in terms of episodic

accretion in normally inactive X-ray binaries, it has been suggested that 	 1

the transient sources represent a potential_ astrophysical laboratory for

such studies as the investigation of time-dependent phenomena in accretion

disks (Pounds 1976a) and the evaluation of numerical models of stellar

atmospheres irradiated by an external X-ray flux (Endal, De Vinney,,and

Sofia 1976). Further observations are required, to confirm the suggested

association of early-type giant stars and Type II transients and to improve 	 u

A	 upon the rough estimates of the transient source population parameters

L', T) obtained from the first two years of ASM observations. We note

in this latter regard the expected additional lifetime (^ 2 yrs) of Ariel 5

and the proposed launch in the early 1980's of a second generation All-Sky
I

Moni±Lr with improved spatial resolution (comparable to current octant-

mode resolution) and sensitivity (factor of n, 10 improvement in counting

statistics).
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APPENDIX A

UHURU-ASM FLUX CONVERSION

As the first satellite to comprehensively survey the X-ray sky, the

UHURU count rate has been adopted as a standard unit for cosmic ,X-ray flux

measurement. This standard count rate may be related to incident 2 - 6 keV

energy fluxes via a nominal l conversion factor, given by 1 UHURU count s1'

1.7 x 10-11	 merg c 2s-1 (2-6 keV). To convert these rates to the ASM

units of incident 3-6 keV photons we may write thefollowing:

A	 KU ;	 (A-1)

6^.
A	 3t	 dE dE(keV) cm-2 s- 1 ;	 (A-2)

6,
UE = 2f E 

d dE erg cm-2s-1,

UE	 1.7 x 10-11 erg cm-2
s-1 

x U (counts 1
),	 (A-3)

1.06 x 10- 2 keV cm 
2s-1 

x U.

Combination of these equations yields:
a

` A

K	 U	
6

3 f	 dE	 dE
1.06 x 10-2 keV cm 2s-1
	 1

6

	

f E dN	 dE
2	 dE

To obtain the "best" value for K, we have evaluated these integrals for

"representative" power-law and exponential spectra, with the results shown

in Table A.l. It can be seen that a value of K = 1.5 + 0.5 x 10 3
i

represents a reasonable conversion for a relatively wide range of incident

spectra,

a

'Obtained for an "average" source spectrum, and usually accurate to

+ 30% (see Giacconi et al. 1974); the unit so defined has been designated

w 1 UHURU flux unit (UFU).
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APPENDIX B

EARTH OCCULTATION

A cosmic X-ray source of declination 
1 6 x l 

less than some critical

declination(s c ) will be occulted by the earth during some fraction of

each satellite orbit.	 Since the spacecraft operates only in sunlight,

both the duration and phase (relative to the sun) of the source occultation

must be computed to obtain the _correct source exposure time to the detector.

In the following derivation, an equatorial, circular orbit is assumed, and R

the magnitude of errors resulting from the non-zero inclination { e i = 2.90)

and eccentricity (E = 0.0033) of the actual orbit are estimated'.

1.	 Computation of Occultation Angle (8 	 (6
(sx^)'

From Figure B.1, it can be seen, that a source will 	 never be occulted
:

if	 l a x (	 > 6c, where

sin -1 	
(Rx/Ro)

=	 70.87°.

For	 16xi	 <	 S c	 the extent of occultation increases with decreasing
s

declination, reaching a maximum at 6 x	 =	 0	 The occultation angle,

defined as the angle traversed by the satellite during which the source is

earth-occulted ,	 is given by ( see Figure B.2)
o	 (s) R' (a)

sin
occ	 x

2
_	 x	

whereq

q	 =	 R°/cos (D and

2	 2	 2)%
R'(S x )	 _	 (Ro	 tan	 ^ - ra	 2

x

=	 R° 	 -	 sin 	 o - sin 	 S	 2	 Hence,
^cos y	x '

1 This  is equivalent to the angle traversed by the occulted source in its

i

apparent motion 'relative to an observer moving with the spacecraft, and

is so illustrated in	 Figure B.2.

107`
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=	 2 sin -1 	(sin 2 (D - sin 2 	6(B-1)6occ(6 x)	 x

Note that this reduces to the two limiting values

eocc00	
_	 0 and

eocc(0)
	 _	 2(p ,	 as required.

r

. 2.	 Determination of Source Occulted Phase Relative to the Sun:

As illustrated in Figure B.3, the times of occultation commencement/

termination during the orbit may be obtained from the time of eclipse entry

(Tee' 	 event 7 in time-event code housekeeping array) as:
r	 g

' (7r^2	 T) + a rel	 + eocc	 (6x)12start
T	

-_	 T	 +	
Focc	

end	
ee	

27rorb

_

where

arel	
=	 ^ax - a

0 1,

1
S x	 =	 Source DEC.,

1

a x	 =	 Source R.A., and

a	 =	 Sun R.A.

k	 `

3.	 Mean Unocculted Fraction

As ao varies during the year, the phase of the occulted region

relative to the sun	 (and ,hence eclipse entry) will	 rotate, with a

z corresponding variation in the "mean unocculted fraction" defined by

i
n.	 _	 sun	 f^occ (S x )	,where

sun

esun	 =	 Angle sub ended by sunlit fraction of orbit

r	 -1
esun (s o )	 -	

f = sin
\2

cos t T- sings 
o

2	 and

cos2S o
f	 fraction of 

eocc 
lying within osun

_
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APPENDIX C

COMPUTATION OF SOURCE LATITUDINAL CORRECTION FACTOR (LCOR)

As discussed in Chapter III as the elevation of a source increases

(i.,e., increasing spacecraft latitude, D), the source is exposed to the

detector for an increasing fraction of the satellite rotation. This

effect is corrected for by defining a source latitudinal correction factor

as;

LCOR(D)	 Ton (D)
2Tr

fi(D)
	 FWHM of triangular longitudinal spatial

on
response (cf._Figure 3.4)

wi th the property that

Ts	= LCOR(D) x TIMON,

TIMON	 Net detector ON-time (=T
dur - Tdis(i)), and

Ts	= Effective source exposure time.

This factor may now be computed as follows (refer to Figure C.la):

S	 Source position vector (chosen in yz`plane)

N	 = Pinhole normal vector
^

Angle between xy plane projections of N and S.

a Hence,

N	 _ -sing cosD x + cosh cosDy + sin Dz,
^	 j
S	 cosDy + sin Dz,

and

cos^NS
	 = N	

S

cosh cos 2 D + sin 2 D, or

^N$	
= cos -1 (cosh cos 2 D + sin D).	 (C-1)

i
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The static "fan-beam" detector response is also latitude-dependent,

and as shown in figure C'.1b, a

(D) - tan a cos _(D-7r/4)
(C-(C	 2)	

s
f h

r

where

a 1 cm	 and z

h = 15 cm r

Now, a source will	 be exposed to the detector as long as the condition

I^ NS ( D)1_ $f (o)

is	 satisfied. Thus, one-half of the longitudinal extent	 (i.e.,	 ^2

(response = 1)	 } ¢(response _ 0)	 is given by:

-1cos 2	 2`cosh	 os D + sin D _	 -1
-	 tan a cos ( D-7r/4 )

2 h

or
-1fos

-1	 a	 cos(D-7r/4)tan	 (	 h	 , 2-sin D1
^^(D) = cos

}'	 (C-3)
cos t D

^I
f	 Finally,	 for a triangular response function,

FWHM _	 112 x Longitudinal 	 extent, ='

^ lon(D) 2(D), and

LCOR(D) _	 ^2 ( ^ )	with^2(D) as given in Equation C-3.,
2 7r > :'



APPENDIX D

COMPUTATION OF "GEOMETRICAL FACTORS"

Recall that the geometrical factor is defined to relate the counting

rate of a detector to an isotropic source flux: C	 G I o , where

C	 = Detector count rate (sec 1), 	
!4

IQ	 Isotropic source intensity (photons cm 2 s'
1
sr-1 ), and

G	 Geometrical factor.

In the case of the All-Sky Monitor, there exist eight independent detector

I	 elements (corresponding to the eight electronically-divided anode segments)

for which geometrical factors must be computed to obtain the expected con-

tribution from the isotropic diffuse X -ray background.

Following Sullivan (1971), we may write (see Figure D.l):

G	 = fdwf da'• r = fdwA(w),	 (D-1)
g

1
where

dw = element of solid angle,

da = element of surface area of the last detecting sensor.
to be penetrated, and

r	 = unit vector in direction w	 1

For an ideal, cylindrically symmetric detector with two planar detecting

areas (consisting in the present case of the pinhole aperture and anode

detecting strip), the geometrical factor is given by Equation D-1 with the l
domain Q limited by the ,top detector:

G	 -- t f ( d3lb	 r) dw

S2

)

dw _ r •d61

t	 G	 = I I	 ( r ' d6i) (r •d62) •	 (D-2)

S 1 S2

113
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For the geometry shown in Figure D.la (two rectangular detecting areas with

	

sides (c ,d) and (c ,d) where c and d are parallel to c and d 	 '
1	 l	 2	 2	 1	 1	 2	 2,_	 i

respectively), Equation D-2 may be integrated to yield:
k

t

- 2	 h2+a2+82	 h2+Y2+s2G - h In r

h2+a2 +^ 2 	h2+Y2+ s2

2	 2 2	 -1 2 
a2	 + s(h2+a2 ) 2tan -1 2 

R2
+2 00	 6 ) tan-'

	 +s ) z	 (h' 	 ) 2

a	 2 2 z	 -1	 s
2	 2	 -1 	 + s(h +Y) tan	 1

-2 a (h + s ) tan-' 	 (h2
+y 

2

-2 Y ( h2 + X2 ) 12 tan -
'	

, + 6(h
22

 ) 2tan 1	 a 1 
(h2+R2 ) 2	 (h2+a2) 2

+2 Y(h2 + 62 ) -2 tan
- '	 2 + d(h2+y 2 ) 2tan 1 2 6 2)k	 (D-3)

(h +s)	 —(h2+	 )

where

	

Y = 2(cl - c2 )^ and s	 td1 - d2).

For the ASM'detector, c l	dl	d2 = a (c2 varies according to latitudinal

segment),and Equation D-3 is correspondingly simplified. Instead of per-

forming the integration for each of the eight anode segments, however, we

may utilize the symmetry of the detector and the property of the geometrical

factor that G
Tot	

E G. (resulting from its integral nature), where in

i

this case	
GTot	

Geometrical factor for the entire anode,

and

Gi	= Geometrical factor for the i th anode segment (latitudinal

element),

to compute each of the G i . Thus (see Figure D.1b),



Fri
f

115

GTo _	 Gnn`
(D-4a)

1

Gn +
Gn 	 2 Gn	 -	 Gnn'	

Gmm , (D-4b)

G	 +
nm
G=	 2(G	 + G)	 =G	 -G	 ,
n'm'	 n	 m	 nn	 11

(D-4c ) 7

r'

Gn i + Gn , l , 	 2(Gn + Gm + G l )	 _ Gn n ,	 -	 Gkk , (D-4d)

G+
nk

G	 ,	 =	 2(G	 + G	 + G	 + G) = G	 - G..,,	 and
n k	 n	 m	 1	 k	 nn

-(D-4e)

Gj + Gj ,	 _	 2 GJ	
GJJ

(D-4f)

l

Equations D-4 may now be solved for the eight geometrical factors, upon

evaluation of the expressions	 for G
nn ,,	 Gmm,,	

Gl1 „	 Gkk,,	 and Gj,:

G8
Gn	

(Gnn'	
Gmm')/2

G7	 = Gm	_	 (Gn n' 	-	 Gll,)/2	 -	 G8 :.

G6 	= Gl 	_	 (G	 - Gkk' )/2 -	 ( G7 + GB)nn'

G5
Gk	 (G
	

GJJ')/2	
( G6 + G7 + Gg)nn'

G4 	= G^	 =	 G^^'/2

G3	 - G4 f

G2	 = G 5 , and

G1 G6 + G/ +;G8' ;g

The five (sum) geometrical factors are computed from Equation D-3, with

a	 = %( a + z'	 a,	 Y	 -	 %( a	 and	 S =	 0, where

7Q,	 3t,	 t,	 and z	 for Gnn'	 Gmm'	 G11^,	 Gkk',	
and G^^,,

8	 4	 2	 4

respectively. The factors Gi	 thus computed are listed in Table 3.3.



APPENDIX	 E

.

CONSTRAINTS ON THE LUMINOSITIES, FREQUENCY, AND

1

SPATIAL DISTRIBUTION OF THE TRANSIENT X-RAY SOURCESI

it

We begin by making the following simplifying assumptions:

(1)	 Transient sources may , occur at random anywhere within a given
r'

galaxy, with a mean time -c between occurrences (per galaxy);

(2)	 The outburst is characterized by a sharp turn-on and exponential

w
decay (time constant Td	 TON ), with L (t < o) = 0_and L (t > 3 T

ON ) = 0'

(3)	 All sources appearing above a minimum detectable flux, So, are

detected (limiting radius	 Ro = (4	 `) .7T5 )0
It follows (see, for example, Bevington 1969, page 38) from assump-

tion	 (1) that the probability (per galaxy)of at least one source occur-

ring in the interval	 (o,t)	 is given by. a

P(t,T)	 =	 1	 - e-t/T	
(E-1)

t	
for t << T.T

r	
,

A.	 Extragalactic Origin

For a uniform spherical distribution of sources (density = n s ), the

number 'N	 within a radius r is t
r

r

Nr	 =	 4Tr	 t'	 n s	r'z dr y .	 (E-2)
: o

Thus, the total number of sources appearing above S - S o in time t

i
(«T)	 is:

t

The basic approach followed herein is taken from Silk (1973)i

r	 r
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2

9
	 CO

2	 ( N (> So,t))	 So3	
TON	

(E-5)
L	

>

47	 ( H,	 Ix	
t 
2

f

and
3	 (N	 St) ),(	 3	

TON9	 c l	 o' 2	
S

T >	 2	 ng	
C H	 /	 3	 0	 2	 (E-6)
\167r	 o/	 Ix	 t is

r

Adopting the values:

I x	=	 7.6 x 10 
8 

erg (cm 2 s sterad)_
1
	(1-13 keV, Gorenstein et al. 3

1969)

Ho	 50 km s
-1	

Mpc 1	 and 3

n g	 =	 1	 x 10
-75 

cm 3 , Equations E-5 and E-6 yield:

45	
N(>So,t)2	 2 2

	 So	 3	
TON 

2	
1

10L	 >	 1.3 x 5 ( t) \	 9, ( 0.1)	 erg	 s
8x10 s

and 3	 N(>So,t)2	 2	 So	 3	
TON 

3
T	 >	 2.5 x 10 5

2
C t)	 C	 -,8x10 0 1)	

yr '

where the parameters t, N( >So ,t), So, and TON are taken from the Ariel 5
observations:

s
v

t
	

2 yr,
1

So	 ti	 Scrab/2
	 -	 8 x 10 

9 
erg	

cm-2s-1,

N(>S o' t)	_	
5

TON	
=	 0.1 yr.

a

While these values for L and T are approximately 1-2 orders of magnitude

below those derived by Silk on the basis of the pre-Ariel 5 observations,

the result T	 ku	 2.5 x 103 yr	 is still	 irreconcilable with the known rate

of occurrence of supernovae (TSN r 10 2 yr per galaxy), thereby ruling out

the hypothesis that the transient sources are related to extragalactic

supernova explosions (Sofia 1972). 	 As further noted by Silk, an extra-

galactic origin in general	 for the transient sources 'would require the
{

v
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occurrence of catastrophic events in some fraction f of all galaxies

at a mean interval At	 `	 fT(>2,5 x 103 f) yr	 with total X-ray energy

outputs of E ti 4 x 1051 ergs.	 As these properties are so extreme compared

to the known properties of extragalactic sources 	 (e.g., E SN < 4 x 1049 ergs,

a

Allen 1963), such an origi-n is extremely improbable.
1

B.	 Galactic. Origin
t

Proceeding as in (A) Equation E-2 now becomes:

(in the following we have ignored the offset of the sun from the galactic

center)

For a uniform spherical 	 halo distribution of sources we obtain:

Ro

N(>S	 ,t)	 =	 t	 n	 (47rr' 2dr');	 n	 = P(t'T0	
o	 s	 s	 4 7rR3

3

where

n s	=	 number density of transients in the Galaxy,

and

R	 galactic radius;	 hence,`

3
R

N ( 'So' t)	 R )	 T
!

l	 L	 3/2	 t

As noted in Chapter V, the observed absence of transients outside ofa

narrow band along the galactic equator allows us to rule out a spherical

halo distribution for the transient sources.	 We thus pursue the case of

a uniform spatial distribution of sources in a disk of scale-height h«R,

and Equation E-2 becomes`:

T



yy)
1

. 	 J

	

N(>S ,t) =	 f R° n	 (2uhr'dr'); p	 = P(t'T)0	 o	 s	 s	 27R2h	 f

2	
1

Ro	 t
R T

L	 t	 yielding the ratio

	

N( >S° ,t) _	
2 —T

47TSOR
!'.

4ff N(>S ,t) S	 R2	 (E-8)_
T	 °	 °

This expression can only provide a lower limit on the ratio 
L 

for

three reasons

(1) we have assumed a sensitivity- limited Situation, i.e., Ro < R;

since, in some cases we expect R > R, the number observed will be < the
number expected (N (>S

0
 t)) in Equation E-8

(2) in a similar fashion, the offset of- the  sun from the center of the

Galaxy (Rs = 10 Kpc) wi ll result in fewer sources being observed as r' increases

from r' = R,- R to r' = R (see Figure E.1); and

	

s	 o	 _r

(3) some fraction of sources with S > So may be missed due to source

confusion in crowded regions of the plane.

Note that these effects will cause the log N	 log S curve to "turn over"

with respect to that expected from an 41deal uniform disk distribution

(AN(= expected-observed) increases with decreasing flux), and hence the

log N	 log 'S plot shown in Figure 5.2 cannot be used to distinguish

between the uniform disk vs. (thin, narrow) spiral arms distributions (arm
Ro

width, w«R, and thickness t«w; For this ease N(>S,t) = M t a wdl0	 o	 s

as	 PMR w) (M = no. of arms) ; N (>So) = Rot - 1	 - L	 tC R ) T R : ( ^rS + 'c

	

\.	 ° 'i
7

t



11 
1 
1 
1 
1 
1 

\ Adopting values of 

So = Scrab/2 = 8 x 10-9 erg cm-2s- l , 

1 
1 
1 
1 

R = 15 Kpc, 1 
1 
1 
1 

t = 2 yr , 1 
1 

Equation E-8 becomes: 1 
1 

L (2 ~r ). 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
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Table	 1.1 135

Nature Class
Designation, description,

Period Ampli
Type

prototype tude i

C Cepheids I= classical 1?5-80° Om 1-2- F-K
cepheids (6 Cep)

CW Cepheids11 = W Virginis 1-50

stars f

RRal asymmetric light curve 0.5
(RR Lyr)

RR Lyrae stars, 0-5-1.5 A
RRc sinusoidal light curve 0-3 f

) (SX UMa)
M Mira stars (o Cet = Mira) 80-1000 2.5-8 M, N

Pulsating RVa constant mean brightness
(periodic) (AC Her)

RV Tauri stars 30-150 0 . 5-3 G-M
RVb varying mean brightness

(RV Tau)
C Brda Canis Majoris stars, 0.1-0.3 0, 1 gB2

Giants
Sc Delta Scuti stars, Dwarf 0.6 02 dF

cepheids
CV Alpha, Canum Venaticorum 1-25 0.1 Ap

stars, with. variable mag-
netic fields

Semi- SRaj appreciable periodicity
regular (Z Aqr)
(cyclic) SRb Red stars, poor periodicity 30-1000 1-2 M

(A 17 CYB)
SRC Supergiants QiCet)
SRd Yellow Giants and Super- 30-1000 1-2 F-K 7

giants (S Vul)
Ia early Spectral t ype 50-300 A, 1?

(BO Cep)
Irregular lb Variables, red Giants(^OCyg) many

Ic red Supergiants (µ Crvq) 80-200 K. M

Erupties SN Supernovae
(CM Tau = CrabNebula)

Na Fast novae (GK Per 20
Nova IWI) Hot

Nb Slow novae (R It Pic
=Nova 1909)

Dwarfs/
A or F 7-16 v	 ' o	 . a, .1'l^r 	U^t y)) i

Nc Very slow novae(RT Giants > ^ t'^ ^31J s	 (lx
S;A^'jt l l

Ser	 = Nova 1952) I ,c* ^^ l ,T	 ^• t

Nd Recurrent novae 10•-80' 4-8 f dF, dG -
i (T CrB = Nova 1866/1946)

I

I	 Ne Nova-like stars very heterogeneous class
(11 CygNova 1600)

lUG U Geminorum stars, 20-600 24 dG
Dwarfs, frequent outbursts

Z Z Caniclopardalis stars 10-40 2-5 dG'
generally constant

RCB R Coronae Borealis stars, 10-300 1-9 F-R
high luminosity

(in diffuse

Twitchet y RW RWAurigaestars,
nebulae

 or in as- 1-2 3 B-M a)	
T T Tauri stars

I
isoda-

.. tionS
UV UV Ceti stars, Dwarfs, 10.1• 1-6 dMe

rare llares

Symbiotic Combination spectra stars 700 2-4 gM -1- Ac 3
("L And, AG Peg)

Spectroscopic doubles, hot
and cool component?

EA Algol = Beta Persei stars, 0'2-6• 0-4 A-G
spheres

Eclipsing EB Beta Lyrae stars, spheroids 1-10 0-2 B-F
EW W Ursae Majoris stars 0.2-1 0.0.8 F-K

{



Table	 1.2

PRE-ARIEL 5 TRANSIENT X-RAY SOURCES

SOURCE

+
S	 /S

I

DATE OF OBS.
-max- crab

TEMPORAL CHARACTERISTICS SPECTRAL CHARACTERISTICS REFERENCES
COORDINATES ENERGY BAND

(keV)

Cen X-2 9.9 Initial appearance uncertain to 1 1/2 yr. Consistent with thermal bremsstrahlung with Harries et al. (1967)
4 Apr - 18 May Exponential decay with T t, 23d . decreasing temperature over decline Francey et al. (1967)
1967 No fluctuations on timescales of 100 sec 7

(4.2	 - 1.8 )	 10	 °K in 40 days.x
Cooke et al. (1967)

G II 2-5 (Recurrent outbursts up to '- one year Chodil et al. (1967)

b1I = 305.3m aximumafter	 ?) See Figure 2.

Cen X-4 24.8 Abrupt rise to maximum flux (ti2 days). Spectral hardness index (6-12 keV: 3-6 keV) Evans et al. (1970)
6 July-24 Sep Two decline ,phases: Initial L.025 mag per decreased sharply in first few days, then Kitamura et al.(1969)
1969 day decrees	 (T u 43d)for ti50 days, fol- remained nearly constant at an average value
211 = 331°0 3-12 lowed by a Steeper decay to disappearance of .5.	 During this phase, the spectrum was
blI ='23°0 in ti 30 days. Possible recovery phenomena similar to Sco X-1 (exponential), with T =

evident.	 See Figure 2, 4.5	 x 10 7 °K.

ì 3U1735-28 0.6 Observed on only two days m one week Best fitted by a thermal bremsstrahlung Kellogg et al_ (1971)
13 & 19 Mar. apart; not seen five days earlier or spectrum	 with parameters: Turner (1976)

r 1971 twenty days later.	 No large (,> 20%)
A = (2.2 + 0.1) x 10-9Q

1I = 359°6 2-10
apparent.changes in intensity	 Re-

b 1 =	
21

detected ti 5 yrs.. after maximum. B = ,(2.2 + 0.3) keV
kT = (4.8 + 0.9) keV

3U1543-47 1.9 Observed rise timeof %3-4 days. Steep spectrum, best fit by power law with Matilsky et al. (1971)
26 July 1971 - Exponential decay similar to early phase average energy spectral index of -3.0 + 0.2. Belian et al. (1973)
1 Feb	 1972 of Cen X-4 (T ='50a). Daily variations No indication of low-energy cut-off to Li et al. (1976)
II

2	 = 330 °.94 2-10
present, but no significant changes on 1.7 keV.	 Sudden change in spectral index

al
Pounds {1976)

b 1 =	 5°37
times of a°1 sec- u3 hr. Recovery peaks observed, implying -00Z drop in T 	 in
evident. Observed at v2% of maximum time of 6 90 min.
ry'S yrs. later.	 See Figure 3.

+Scrab	
1.6 x 10 $ erg cm 

2 
sec-1 (2-6 keV) i.

*dn/dE = A exp (-(B/E)8/3)x exp (-E/kT) ergs-cm 2
- _s-1 

-keV 
1

**Isothermal  Bremsstrahlung fit

J
W

S

.1F' ii"• y4r,ttxl.	 _::.: M1	 ecay, .^::. .,	 ua..aa:.yy,^ri.r.^ y..	 ..	 .:.	 —, : -..i	 ..^. ^..	 ..`.... ,; .. u.....aevya:.".a..°ss^	 _ .	 _::	 .u^.......—a^:t..s...,,..e4..mL. .	 ^	 —	 le.^..a...atJa
.	 ,

^^
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Table	 1.3

POST-UHURU TRANSIENT X-RAY SOURCES

SOURCE
SmaxiStra

+ OF --------- F
OCCURRENCEOCCURRENCE &YERGY

TEMPORAL CHARACTERISTICS SPECTRAL CHARACTERISTICS REFERENCES.

COORDINATES .. HAND

A1524-62 0.9 tR
	

;t	 20 Best fit by power law Spectrum with photon Pounds (1975).

Nov. 1974 . index = -2.5.. .Spectral softening evident Kaluzienski et al. (1975a)
@ RIf= 32b°2 -^	 2 months. through precursor peak.{,
6 bII	 - 4x5.. 3-6 keV Precursor. peak	 ( 40% x 5max).

^10 11 prior to primary maximum.

A1118-61 0.10c 3d Best fit spectrum:	 Power law with index Ives et al. (1975)

Dec.	 1974 - R - -1.0. Eyles et al- (1975x)
ill = 292°5 t	 '.	 1 week	

d Significant absorption < 4keV (local to
-11

3-9. keV Precursor peak 5	 prior to maximum
source).

"Pulsing" at P - 6.75 min.

A1742-28 2.3 ^ t R
	

.,	 2 11 - Bower law spectrum with photon number index
Eyler et a1. (1975b)

Feb. 1975 d
t	 ^^	 12	 (for 40 days after: maximum)-.L

=-3 and	 euzral hydrogen column. density
2^	 2	 Variations in hardness

Branduard3 et al.. (1976)
P 4II = 359°96

-. NH -	 10	 atom-cm
LI

-	 b	 - 0°14 3-ltl keV dt2	 v	 9O	 (for next 140 .days). and degree of absorption on timescale of
•,	 days.

A0535+26 i2.0 t	 o	 1111 Best fit by power law with index = -0.8 - Rosenberg et al. (1975)
Apr. 197$ R	 d -1.1.	 Initial strong low. energy attenuation, Ricketts at al. (1975.)
11

°5
¢	 °	

19
°-	 S	 1	 ; 5 .followed later by no noticeable cutoff to Kaluzienski et al. (1975b)

`
£.	 a 181

3-7. keV
Low-level emission (I2x 	 max. h 1,2 keV.	 If spectrum is thermal consider- Rappaport at al_ (1976) j

3
II

b	 = - 2°7
day s prior to onset.	 Recurrent emission able cooling during decay is implied.

7
'. 7 months of per maximum.	 Pulsing at  i
P - 104 see.. y^

A0620-00 AO
t 
	 7d. Best fic by variable power law or thermal Elvis at al_ (1975)

Aug. 1975
t	 (3-6 keV) ^_. 

25d spectra with high energy excess.	 Initially Ricketts et al. (1975b)

II hard through precursor peak, with marked Doxsey at al. (1976)
r,	 - 209°1

.15-5 keV
'.Secondary increases	 2 and 7 months

softening (a ^ -0.6 - -4..0; kT =30 - 1..5 keV), Kaluzienski at al. (1976)
LI

b	 6°5
after maximum. followed. by final rapid

t	 d	 decay10d).decline (t.	 Similar	 of
during rise to primary maximum. Gradual
.softening and increasing low energy attenu-

recurrent nova optical counterpart
ation afterwards.kYEt-

CV616 Monocerotis). i	 a

Dec, 1974 r <	 1 month Founds (1976)

i 11 = 302 (-0,2)
b	 = 3.5 3-6 keV

1A3745-l6 (0.3)

j

Feb. 1916 I

LT = 354'1
Davison at al. (1976)

b1L > - 4.2

A1743-29
_ Mar. 1976 . Ariel 5 G—p.

- L1I = 359°6 Univ. of Birmingham (1976)	 j
bII - - 0°42

' Mxlsal-24 ('-1•b) Jernigan

j

(1976)	
-.....1

May 1976

L	 =	 Rise-time.

.
*.c

e-folding decay tir:e constant

_	 ti
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CET X-1 1450 -600 DECEMBER, 1967 -0.6 UV CETI (MIRA) IN ERROR BOX BARNDEN AND FRANCEY, 1969
ERROR CIRCLE 1.5-6 keV
RADIUS = 15*

CET X-2 1590fl0c -520 ±5* OCTOBER, 1969 -10 UV CETI (MIRA) IN ERROR	 BOX HARRIES et at , 1971
1.5 -5 keV SHUKLA AND WILSON, 1971

CEP X-4 990 3.40 JUNE- JULY, 1972 -0.2 NOT DETECTED -6 MONTHS PRIOR ULMER et at, 1973
7-26 keV AND -7 MONTHS SUBSEQUENT.

HARD SPECTRUM.
3U1901+03 37.1 0 -1.40 JAN.-MAR. 1971 -0.1 FORMAN et (it, 1976a

2-6 keV

3UO115+63 125.90 1.1 0 JAN.- FEB., 1971 -0.1 FORMAN et at, 1976 a
2-6 keV

MX1746-20 7,7 0 3.80 DECEMBER, 1971- -0.2 GLOBULAR CLUSTER NGC 6440 FORMAN et 6, 1976 b
MARCH, 1972 3-6 keV IN ERROR BOX

MX0656-07 220.20 -1.7 0 20 SEPT 1975 -0.1 SPECTRAL HARDNESS 0.3-13 keV) CLARK, 1975
MARCH, 1976 3-6 keV = CRAB . NEBULA CARPENTER et at, 1975

KALUZIENSKI et at, 1976a
CENTAURUSS , 313 0 ±50 0 0 ±5 0 DECEMBER, 1971- 4xlO-' CM" 'S- 'keV- VERY HARD SPECTRUM WHEATON et at, 1975
TRANSIENT APR., 1972 10 keV (35 keV THERMAL BREM.)

JUNE, 1972
AQL X-1 35.70 -4 0 1971-1976 -1 MEAN FLARE INTERVAL KALUZIENSKI et 

at 
, 1977 b

(31.11908-100) 3-6 keV -435 DAYS±10% MARKERT ,1974

3UI630-47 * 336.90 0,3 0 1971-1976 -0.4 PERIOD=615±5 DAYS JONES et 
at 

, 1976
2- 6 keV

NORMA 330.90 -0,80 1971-1976 -0.4 NORMA BURSTER ? KALUZIENSKI et at, 1976 b
TRANSIENT* 3-6 keV GX331-1 ? 4UIGOB-52 ? TANANBAUM et 

at 
1976

(4UI608-48) MX1608-52 ? GRINDLAY AND GURSKY, 1976
GX339-4 * 339 0 -4 0 1971-1973 -0.3 VARIABLE BY Z60X OVER -MONTHS MARKERT et at, 1973
(31.11658-48)

AOO25+59 120,1 0 -3.2 0 1975 50.1 SKINNER, 1975

jl

A

ii

if



CEN X-2 18.3 0.23 ; .002 0.73 ; .006 2.30 , 0.02 7.30 ; 0.06

CEN X-4 22.9 0.15 ; .057 0.47 ; 0.18. 1.50	 0.57 4.70 ; 1.80

3U1735-28 25.0 0.95 ;,.035 3.00 ;	 0.11 9.50 ; 0.35 30.0 ; 1 .10

3U1543= 47 22.9 0.52 ; .049 1.64	 ;	 0.15 5.20 ; 0.49 16.4 ; 1.50

A1524-62 21.2 0.82 ; .065 2.60 ; 0.21 8.20 ; 0.65 26.0 ; 2.10

AII18-61 15.6 2.24 ; .030 7.10	 ; .095 22.4 ; 0.30 71.0-; 0.95

A0535+26 5.0 0.51	 ; .025 1.62	 ; .079 5.10 ; 0.25 16.2	 ; 0.79

A1742-28 25.0 0.46 ;	 .001 1.51	 ; :003 4.80 ; 0.01 15.1	 ; 0.03

A0620-00 5.5 0.10 ;	 .012 0.33 ; .038 1.00 `;	 0J2 3.30 ; 0.38

Al246-58 17.7 1;61	 ; -.098 5.09 ;	 0..31. 16.'1	 ; 0.98 50.9 ;	 3.10

A1745-36 24.9' 1.31	 ; .095 4.16 ; 0.30 13.1	 ; 0.95 41.6 ; 3.00

A1743-29 25.0 1.61	 ;	 .012 5.09 ; .037 16.1	 0.12 50.9 ; 0.37

MX1803-24

AOL X-1

3UI630-47

24.9

22.0

23.7

0.72 ; .024

0.72 ; 0.05

1.14	 ; .006

2.28 ; .075

2.28	 0.16

3.60 ; .018

7.20 ; 0.24

7.20 ; 0.50

11.4 ; 0.06

22.8 ; 0.75

22.8 ;	 1.60

36.0	 0.18



P,

-- _..-:_

TABLE	 5.2

TRANSIENT X-RAY SOURCES

CLASSIFICATION TYPE	 I TYPE	 II

f

Spatial	 Distribution 0.3'u	 ]z]	 (Kpc) ti 1.3; 0.04 ti (z(	 (Kpc) ti 0.3

Disk Pop.	 -	 Intermed.	 Pop.	 II Population I

Frequency 1	 T_1(yr-1) ti	 10 5	 ti T-1(Yr 
	

100

Lifetime rd	1 month
d <
	 l month

Peak Luminosity 1038''<	
L(erg s-1)	

2 x 
,^39

2 x 1036 
IV L(erg 

s-1^ ti 1038

Additional	 Characteristics Relatively soft, a*	
acrab

Hard spectrum a ti acrab

Slowly pulsating

Mechanism Roche-lobe overflow of low-mass, Stellar wind increase of massive

late type companion early-type optical companion

Examples Cen-X-2, Cen X-4, 3U1543-47, 301735-28, A1118-61, A0535+26

A1524-62, A1742-28, A0620-00

"Stable" Counterparts. Aq1 X-1 Vela X-1	 (3UO900-40), Cyg X-1

E dE	 =	 E

_a

w



TABLE 5.3

LONG-TERM VARIABILITY OF GALACTIC X-RAY SOURCES

TYPE VARIABILITY TIMESCALE EXAMPLES"

Quasi-Stable 3 yrs Sco X-1; Cyg X-2

Variable ti 5 yrs Cyg X-3

Flaring ^' 5 - 10
TON 	

months Cyg X-1

t

High/Low States ti 20 - 100
TON	

months - yrs Cen X-3, Cir X-1, Vela X-1,

Her X-1	 10 'yr optical	 cycle)

f	 Regular modulation a 20
TMOD	

months Her X-1	 (35d cycle)

Highly variable 100 months = yrs See Villa et al.	 1976
E

Recurrent transients ti 50 - 500 Td	 u 1 month Aql X-1, 301630-47

(Transient/Variable)
T	 ti 5 rs
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GALACTIC MAP OF TRANSIENTS, CANDIDATES AND TRANSIENT-LIKE VARIABLES
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_R x	== R E + Hx = '6.49817 x 103 km

R o	= Orbit Radius = 6.87817 x 103 km

cos (RE/Ro) = 21.980

= sin-1 (R x /R .0 ) = 70.870
Figure B.1	 -
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